精英家教网 > 初中数学 > 题目详情
如图,已知直线l:y=-x+m(m≠0)交x轴、y 轴于A、B两点,点C、M分别在线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M旋转180°,得到△FEM,显然点E在y轴上,点F在直线l上;取线段EO中点N,将△ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点。记:过点F的反比例函数图象为C1,过点M且以B为顶点的二次函数图象为C2,过点P且以M为顶点的二次函数图象为C3
(1)当m=6时,①直接写出点M、F的坐标,②求C1、C2的函数解析式;
(2)当m发生变化时,①在C1的每一支上,y随x的增大如何变化?请说明理由;
②若C2、C3中的y都随着x的增大而减小,写出x的取值范围。
解:(1)①点M的坐标为(2,4),点F的坐标为(-2,8);
②设C1的函数解析式为y=(k≠0),
∵C1过点F(-2,8),

∴k=-16,
∴C1的函数解析式为
∵C2的顶点B的坐标是(0,6),
∴设C2的函数解析式为y=ax2+6(a≠0),
∵C2过点M(2,4),
∴4a+6=4,a=-
∴C2的函数解析式为
(2)依题意得,A(m,0),B(0,m),
∴点M坐标为,点F坐标为
①设C1的函数解析式为(k≠0),
∵C1过点

∵m≠0,
∴k<0,
∴在C1的每一支上,y随着x的增大而增大;
②当m>0时,满足题意的x的取值范围为
当m<0时,满足题意的x的取值范围为
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.
(1)写出∠AOC与∠BOD的大小关系:
相等
,判断的依据是
等角的补角相等

(2)若∠COF=35°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知直线l1∥l2,AB⊥CD,∠1=30°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l1y=
2
3
x+
8
3
与直线 l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀化)如图,已知直线a∥b,∠1=35°,则∠2=
35°
35°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线m∥n,则下列结论成立的是(  )

查看答案和解析>>

同步练习册答案