精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC切于点E,且AB=BE.
(1)求证:AB是⊙O的切线;
(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.

解:(1)如图,连接OB、OE.
在△ABO和△EBO中,

∴△ABO≌△EBO(SSS),
∴∠BAO=∠BEO(全等三角形的对应角相等);
又∵BE是⊙O的切线,
∴OE⊥BC,
∴∠BEO=90°,
∴∠BAO=90°,即AB⊥AD,
∴AB是⊙O的切线;

(2)∵AD=10,DC=8,
∴OC=13,OE=5,
∴在直角△OEC中,根据勾股定理知,EC=12.
设DF交OE于点G.
∵DF∥BC(已知),
∴∠OGD=∠OEC=90°(两直线平行,同位角相等),
∴OG⊥DF,
∴FD=2DG(垂径定理);
∵DF∥BC,
=,即=
∴DG=
∴DF=
分析:(1)欲证AB是⊙O的切线,只需证明证得AB⊥AD即可;
(2)根据垂径定理推知DF=2DG;然后根据平行线截线段成比例证得=,即=,由此可以求得DF的长度.
点评:本题综合考查了勾股定理、全等三角形的判定与性质、切线的判定与性质以及平行线截线段成比例等知识点.在证明OE⊥DF时,也可以利用切线的性质与平行线的性质证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案