【题目】阅读下面的解题过程,解答后面的问题:
如图
,在平面直角坐标系
中,
,
,
为线段
的中点,求
点的坐标;
解:分别过
,
做
轴的平行线,过
,
做
轴的平行线,两组平行线的交点如图
所示,设
,则
,
,![]()
由图
可知:
![]()
线段
的中点
的坐标为![]()
![]()
![]()
(应用新知)
利用你阅读获得的新知解答下面的问题:
(1)已知
,
,则线段
的中点坐标为
(2)平行四边形
中,点
,
,
的坐标分别为
,
,
,利用中点坐标公式求点
的坐标。
(3)如图
,点
在函数
的图象上,
,
在
轴上,
在函数
的图象上 ,以
,
,
,
四个点为顶点,且以
为一边构成平行四边形,直接写出所有满足条件的
点坐标。
【答案】(1)线段
的中点坐标是
;(2)点
的坐标为
;(3)符合条件的
点坐标为
或
.
【解析】
(1)直接套用中点坐标公式,即可得出中点坐标;
(2)根据AC、BD的中点重合,可得出
,代入数据可得出点D的坐标;
(3)当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标.
解:(1)AB中点坐标为
,即AB的中点坐标是:(1,1);
(2)根据平行四边形的性质:对角线互相平分,可知
、
的中点重合,
由中点坐标公式可得:
,![]()
代入数据,得:
,![]()
解得:
,
,所以点
的坐标为
;
(3)当
为该平行四边形一边时,则
,对角线为
、
或
、
;
故可得:
,
或
,
.
故可得
或
,
,
![]()
或![]()
代入到
中,可得
或
.
综上,符合条件的
点坐标为
或
.
科目:初中数学 来源: 题型:
【题目】(1)已知代数式(kx2+6x+8)-(6x+5x2+2)化简后的结果是常数,求系数k的值.
(2)先化简,再求值:2(
-3xy-y2)-(2x2-7xy-2y2),其中x=3,y=-
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.
(1)当t为何值时,四边形ABDE是矩形;
(2)当t为何值时,DE=CO?
(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔,标价都是2元/支,但甲、乙两商店的优惠条件却不同.
甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.
乙商店:按标价的80%付款
在水性笔的质量等因素相同的条件下:
(1)设小明要购买的该品牌笔数是x(x>10)支,则甲商店购买水性笔的费用为 元;乙商店购买水性笔的费用为 元;(用含x的代数式表示,并化简.)
(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.
![]()
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月份结算,
表示立方米).
每月用水量 | 单价 |
不超过 | 2元/ |
超出 | 4元/ |
超出 | 8元/ |
请根据上表的内容解答下列问题:
(1)若某户居民2月份用水
,则应收水费_________.元
(2)若该户居民3月份用水
(其中
),则应收水费多少元(用含a的代数式表示,并简化).
(3)若该户居民4,5两个月共用水
(5月份用水量超过了4月份),设4月份,用水
,则该户居民4,5两个月共交水费多少元(用含x的代数式表示,并简化).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系 ;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度数;
(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com