精英家教网 > 初中数学 > 题目详情

如图,O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E.
(1)四边形OCDE是矩形吗?说说你的理由;
(2)请你将上述条件中的菱形改为另一种四边形,其它条件都不变,你能得出什么结论?根据改编后的题目画出图形,并说明理由.

解:(1)四边形OCDE是矩形.
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
又∵AC⊥BD,
∴∠DOC=90°,
∴四边形OCED是矩形.

(2)任意改变四边形ABCD的形状,四边形OCED都是平行四边形(答案不唯一).
理由如下:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
分析:(1)由菱形的性质可证AC⊥BD,∠DOC=90°,又已知DE∥AC,CE∥BD,可证四边形OCED是平行四边形,所以四边形OCED是矩形;
(2)由已知DE∥AC,CE∥BD,所以四边形OCED是平行四边形.
点评:本题考查菱形的性质、矩形的判定和平行四边形的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是(  )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为2
3
时,菱形ABCD的边长为2.

查看答案和解析>>

科目:初中数学 来源:2012年10月中考数学模拟试卷(9)(解析版) 题型:选择题

如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是( )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为2时,菱形ABCD的边长为2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中数学 来源:2012年重庆市渝北区中考数学一模试卷(解析版) 题型:选择题

如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是( )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为2时,菱形ABCD的边长为2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中数学 来源:2012年重庆市开县西街中学中考数学一模试卷(解析版) 题型:选择题

如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是( )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为2时,菱形ABCD的边长为2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市开县西街中学九年级模拟考试数学试卷(一)(解析版) 题型:选择题

如图四边形ABCD是菱形,且∠ABC=60,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是( )
①若菱形ABCD的边长为1,则AM+CM的最小值1;
②△AMB≌△ENB;
③S四边形AMBE=S四边形ADCM;④连接AN,则AN⊥BE;
⑤当AM+BM+CM的最小值为2时,菱形ABCD的边长为2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

同步练习册答案