Èçͼ£¬Ò»´Îº¯Êýy=xÓë·´±ÈÀýº¯Êý£¨x£¾0£©µÄͼÏó½»ÓÚµãA£¬µãB£¨3£¬0£©ÊÇxÖáÕý°ëÖáÉÏÒ»µã£¬S¡÷OAB=3£®
£¨1£©ÇóAµãµÄ×ø±êºÍkµÄÖµ£»
£¨2£©µãCÊÇË«ÇúÏߣ¨x£¾0£©Í¼ÏóÉÏÒ»¶¯µã£¬¹ýµãC×öxÖáµÄƽÐÐÏߣ¬Óëy=xµÄͼÏó½»ÓÚµãD£¬ÊÇ·ñ´æÔÚÒÔµãO¡¢B¡¢C¡¢DΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãCµÄ×ø±ê£»
£¨3£©µãPÊÇxÖáÉÏÒ»µã£¬ÈôÄܵõ½ÒÔµãO¡¢P¡¢C¡¢DΪ¶¥µãµÄËıßÐÎΪµÈÑüÌÝÐΣ¬ÇëÖ±½Óд³öµãPºá×ø±êµÄ·¶Î§£®

¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¹ýµãA×÷AH¡ÍOB£¬¸ù¾Ý¡÷OABµÄÃæ»ý¿ÉµÃ³öµãAµÄ×ø±ê£¬´úÈ뺯Êý½âÎöʽ¿ÉµÃ³ökµÄÖµ£®
£¨2£©ÉèµãCµÄ×ø±êΪ£¨£¬a£©£¬Ôò¿ÉµÃµãDµÄ×ø±êΪ£¨a£¬a£©£¬·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬¢ÙµãC¡¢DÔÚµãAÏ·½Ê±£¬¢ÚµãC¡¢DÔÚµãAÉÏ·½Ê±£¬¸ù¾ÝCD=OB¿ÉµÃ³ö¹ØÓÚaµÄ·½³Ì£¬½â³ö¼´¿É£®
£¨3£©¸ù¾Ý£¨2£©ÇóµÃµÄµãC¼°µãD×ø±ê£¬½áºÏÌÝÐεÄÐÔÖʼ´¿ÉµÃ³öµãPµÄºá×ø±êµÄ·¶Î§£®
½â´ð£º½â£º£¨1£©¹ýµãA×÷AH¡ÍOB£¬

ÓÉÌâÒâµÃ£¬S¡÷OBA=×OB×AH=3£¬
¡ßOB=3£¬
¡àAH=2£¬
¡ßµãAÔÚº¯Êýy=xµÄͼÏóÉÏ£¬
¡àµãAΪ£¨2£¬2£©£¬
°ÑµãA´úÈëÖУ¬¿ÉµÃ2=£¬
½âµÃ£ºk=4£®
¼´µãAµÄ×ø±êΪ£¨2£¬2£©£¬kµÄֵΪ4£®
£¨2£©ÉèµãCµÄ×ø±êΪ£¬ÔòµãDµÄ×Ý×ø±êºÍµãCµÄ×Ý×ø±êÏàͬ£¬¿ÉµÃD£¨a£¬a£©£¬
·ÖÁ½ÖÖÇé¿ö£º
¢ÙµãC¡¢DÔÚµãAÏ·½Ê±£º£¬
ÈôËıßÐÎOBCDΪƽÐÐËıßÐΣ¬CD=OB=3£¬
¼´£¬ÕûÀíµÃ£ºa2+3a-4=0£¬
½âµÃ£ºa1=-4£¨Éᣩ£¬a2=1£¬
¼´C£¨4£¬1£©£®
¢ÚµãC¡¢DÔÚµãAÉÏ·½Ê±£º£¬
ÈôËıßÐÎOBDCΪƽÐÐËıßÐΣ¬CD=OB=3£¬
¼´£¬ÕûÀíµÃ£ºa2-3a-4=0£¬
½âµÃ£ºa1=4£¨Éᣩ£¬a2=-1£¨Éᣩ£¬
¼´C£¨1£¬4£©£®
£¨3£©¢Ùµ±µãCµÄ×ø±êΪ£¨4£¬1£©£¬µãD×ø±êΪ£¨1£¬1£©Ê±£¬ÒªÊ¹O¡¢P¡¢C¡¢DΪ¶¥µãµÄËıßÐÎΪµÈÑüÌÝÐΣ¬
ÔòµãPµÄºá×ø±êÓ¦´óÓÚµãCµÄºá×ø±ê£ºPºá£¾4£»
¢Úµ±µãCµÄ×ø±êΪ£¨1£¬4£©£¬µãD×ø±êΪ£¨4£¬4£©Ê±£¬ÒªÊ¹O¡¢P¡¢C¡¢DΪ¶¥µãµÄËıßÐÎΪµÈÑüÌÝÐΣ¬
ÔòµãPµÄºá×ø±êÓ¦´óÓÚµãDµÄºá×ø±ê£ºPºá£¾4£»
×ÛÉϿɵõãPµÄºá×ø±ê´óÓÚ4£®
µãÆÀ£º´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌâ£¬Éæ¼°ÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Èý½ÇÐεÄÃæ»ý¼°ÌÝÐεÄ֪ʶ£¬½â´ð±¾ÌâµÄ¹Ø¼üÔÚÓÚÇó³ökµÄÖµ£¬ÁíÍâÒªÇóÎÒÃÇÕÆÎÕÌÝÐεÄÌØµã¼°Æ½ÐÐËıßÐεÄÐÔÖÊ£¬ÄѶÈÊʵ±£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Ò»´Îº¯Êýy=kx+2µÄͼÏóÓë·´±ÈÀýº¯Êýy=
m
x
µÄͼÏó½»ÓÚµãP£¬µãPÔÚµÚÒ»ÏóÏÞ£®PA¡ÍxÖáÓÚµãA£¬PB¡ÍyÖáÓÚµãB£®Ò»´Îº¯ÊýµÄͼÏó·Ö±ð½»xÖá¡¢yÖáÓÚµãC¡¢D£¬ÇÒS¡÷PBD=4£¬
OC
OA
=
1
2
£®
£¨1£©ÇóµãDµÄ×ø±ê£»
£¨2£©ÇóÒ»´Îº¯ÊýÓë·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨3£©¸ù¾ÝͼÏóд³öµ±x£¾0ʱ£¬Ò»´Îº¯ÊýµÄÖµ´óÓÚ·´±ÈÀýº¯ÊýµÄÖµµÄxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖª£¬Èçͼ£¬Ò»´Îº¯Êýy1=-x-1Óë·´±ÈÀýº¯Êýy2=-
2
x
ͼÏóÏཻÓÚµãA£¨-2£¬1£©¡¢B£¨1£¬-2£©£¬Ôòʹy1£¾y2µÄxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢x£¾1
B¡¢x£¼-2»ò0£¼x£¼1
C¡¢-2£¼x£¼1
D¡¢-2£¼x£¼0»òx£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

13¡¢Èçͼ£¬Ò»´Îº¯Êýy=kx+b£¨k£¼0£©µÄͼÏó¾­¹ýµãA£®µ±y£¼3ʱ£¬xµÄȡֵ·¶Î§ÊÇ
x£¾2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³É¶¼£©Èçͼ£¬Ò»´Îº¯Êýy1=x+1µÄͼÏóÓë·´±ÈÀýº¯Êýy2=
kx
£¨kΪ³£Êý£¬ÇÒk¡Ù0£©µÄͼÏó¶¼¾­¹ýµã
A£¨m£¬2£©
£¨1£©ÇóµãAµÄ×ø±ê¼°·´±ÈÀýº¯ÊýµÄ±í´ïʽ£»
£¨2£©½áºÏͼÏóÖ±½Ó±È½Ï£ºµ±x£¾0ʱ£¬y1ºÍy2µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Ò»´Îº¯Êýy=x+3µÄͼÏóÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA¡¢µãB£¬Óë·´±ÈÀýº¯Êýy=
4x
(x£¾0)
µÄͼÏó½»ÓÚµãC£¬CD¡ÍxÖáÓÚµãD£¬ÇóËıßÐÎOBCDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸