精英家教网 > 初中数学 > 题目详情
点P为反比例函数y=图象上一点,过点P作PQ⊥x轴,垂足为Q,则S△POQ面积为   
【答案】分析:根据反比例函数y=(k≠0)中比例系数k的几何意义得到S△POQ=|k|,然后把k=6代入计算.
解答:解:根据题意得S△POQ=×6=3.
故答案为3.
点评:本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果点P为反比例函数y=
4
x
的图象上一点,PQ⊥x轴,垂足为Q,那么△POQ的面积为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
k
2x
和一次函数y=2x-1,其中一次函数的图象经过(a,b)、(a+1,b+k)精英家教网两点.
(1)求反比例函数的解析式;
(2)若两个函数图象在第一象限内的交点为A(1,m),请问:在x轴上是否存在点B,使△AOB为直角三角形?若存在,求出所有符合条件的点B的坐标;
(3)若直线y=-x+
1
2
交x轴于C,交y轴于D,点P为反比例函数y=
k
2x
(x>0)的图象上一点,过P作y轴的平行线交直线CD于E,过P作x轴的平行线交直线CD于F,求证:DE•CF为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A为反比例函数y=
k
x
(k≠0)在第一象限的图象上一点,过点A作AB⊥y轴于点B.点C为y轴负半轴上一点,且OB=OC,连接AC.若S△ABC=6,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正比例函数y=
1
2
x
的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如图,点B为反比例函数在第三象限图象上的点,过B点作x轴的垂线,垂足为N,求证:△OAM≌△OBN.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知一次函数y=ax+b(a≠0)的图象与反比例函数y=
k
x
(k>0)的图象相交于A(1,
3
)、B(-3,-
3
3
)两点,且与x轴相交于点C.连接OA、OB.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积;
(3)若点Q为反比例函数y=
k
x
(k>0)图象上的动点,在x轴的正半轴上是否存在一点P,使得以P、Q、O为顶点的三角形与△AOC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案