精英家教网 > 初中数学 > 题目详情

如果一个三角形的一个内角大于相邻的外角,这个三角形是(    )

A.锐角三角形       B.钝角三角形        C.直角三角形        D.等边三角形

 

【答案】

B

【解析】

试题分析:根据内角与相邻的外角是互补的关系即可判断.

∵内角大于相邻的外角

∴这个内角是钝角

∴这个三角形是钝角三角形

故选B.

考点:三角形的内角和外角的关系

点评:熟练掌握三角形的性质及与三角形有关的知识是初中平面图形的基本要求,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,难度不大.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如果一个三角形的一个内角大于相邻的外角,这个三角形是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•镇江二模)如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点.
(1)如图1,矩形ABCD中,AB=3,BC=1,请在边AB上作出C,D两点的所有勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).
(2)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上.
①当t=4、t=5时,直接写出点H的个数.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•东城区一模)我们给出如下定义:如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若∠A=2∠B,且∠A=60°,求证:a2=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.

查看答案和解析>>

科目:初中数学 来源: 题型:

实验与探究:在△ABC中,∠A、∠B、∠C所对应的边分别用a、b、c表示.

(1)如图1,在△ABC中,∠A=2∠B,且∠A=60°.易证:a2=b(b+c)
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC,如图2,∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
归纳与发现
由以上的证明,可以得到关于倍角三角形的一个结论:一个三角形中有一个角等于另一个角的两倍,2倍角所对边的平方等于一倍角所对边乘该边与第三边的和.
运用与推广
(3)(2009年全国初中数学联赛)在△ABC中,最大角∠A是最小角∠C的2倍,且AB=7,AC=8.则BC=
C
C

(A)7
2
   (B)10   (C)
105
    (D)7
3

(4)是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莆田质检)新知认识:在△ABC中,∠A,∠B,∠C所对的边分别用a,b,c表示,如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.
(1)特殊验证:如图1,在△ABC中,若a=
3
,b=1,c=2.求证:△ABC为倍角三角形﹔
(2)模型探究:如图2,对于任意的倍角三角形,若∠A=2∠B.求证:a2=b(b+c)﹔
(3)拓展应用:在△ABC中,若∠C=2∠A=4∠B.求证:
b
a
+
b
c
=1

查看答案和解析>>

同步练习册答案