精英家教网 > 初中数学 > 题目详情

 

如图,在平面直角坐标系xOy中, 正方形OABC的边长为2cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=a+bx+c经过点A、B,最低点为M,且

(1)求此抛物线的解析式.,并说明这条抛物线是由抛物线y=a 怎样平移得到的。

(2)如果点P由点A开始沿着射线AB以2cm/s的速度移动, 同时点Q由点B开始沿BC边以1cm/s的速度向点C移动,当其中一点到达终点时运动结束.

①在运动过程中,P、Q两点间的距离是否存在最小值,如果存在,请求出它的最小值。

②当PQ取得最小值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是梯形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.

 

【答案】

 

(1)此抛物线由抛物线向右平移一个单位,再向下平移17/6个单位得到

(2)

②存在一点R1(2.4, -1.2), R2(1.6, ) 满足题意

【解析】(1)求出顶点M(1,)   ………………………(1分)

     求出抛物线的解析式为:   ……… (2分)

此抛物线由抛物线向右平移一个单位,再向下平移17/6个单位得到。(3分)

    (2)①由图象知: PB=, BQ= t

∴PQ2=PB2+BQ2=(2-2t)2 + t2      (0≤t≤2)…………………(4分)

=5t2-8t+4 =5(t)2 + (0≤t≤2)

∵5>0,且0≤t≤2∴当t=时, PQ2取得最小值………………………(5分)

此时,PQ=      (6分)       

或分成两种情况讨论:0≤t≤1或1<t≤2,若不分情况PB长写成2-2t,扣一分。,

 ②假设存在点R, 可构成以P、B、R、Q为顶点的梯形.……   ……(7分)

这时PB=2=0.4,  BQ=0.8,  P(1.6, -2),  Q(2, -1.2)

R的横坐标为1.6, 把x=1.6代入, 得y=,

∴这时存在R(1.6, )满足题意             (9分)

C:假设BR∥PQ, 则:

直线PQ解析式:y=2x-5.2

直线BR解析式:y=2x-6

 

得到:

经检验:上述两解均不合题意,舍去(11分)

综上所述, 存在一点R1(2.4, -1.2), R2(1.6, ) 满足题意. ……(12分)

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案