精英家教网 > 初中数学 > 题目详情
(2001•黑龙江)如果单项式-3x4a-by2x3ya+b是同类项,那么这两个单项式的积是( )
A.x6y4
B.-x3y2
C.-x3y2
D.-x6y4
【答案】分析:首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.
解答:解:由同类项的定义,得

解得
所以原单项式为:-3x3y2x3y2,其积是-x6y4
故选D.
点评:本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则;
要准确把握法则:同类项相乘系数相乘,指数相加.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2001•黑龙江)如图,在同一直角坐标系内,直线l1:y=(k-2)x+k,和l2:y=kx的位置可能是(  )

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2001•黑龙江)如图,在平行四边形ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于点F.设DE=x(cm),BF=y(cm).
(1)求y(cm)与x(cm)之间的函数关系式,并写出自变量x的取值范围;
(2)画出此函数的图象.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(2001•黑龙江)如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•CB时,求C点的坐标;
(3)在(2)问的条件下,在⊙O′上是否存在点P,使S△POD=S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《四边形》(03)(解析版) 题型:解答题

(2001•黑龙江)如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•CB时,求C点的坐标;
(3)在(2)问的条件下,在⊙O′上是否存在点P,使S△POD=S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年黑龙江省中考数学试卷(解析版) 题型:填空题

(2001•黑龙江)抛物线y=ax2+bx+c经过点(1,0),(-1,-6),(2,6),则该抛物线与y轴交点的纵坐标为   

查看答案和解析>>

同步练习册答案