精英家教网 > 初中数学 > 题目详情
如图.⊙0的半径为2,点A的坐标为(2.2
3
).直线AB为⊙O的切线,B为切点,则点B的坐标为(  )
分析:过B作BE⊥x轴于E,过A作AD⊥x轴于D,求出∠AOD=60°,根据HL证Rt△ABO≌Rt△ADO,求出∠AOB=60°,求出∠BOE=60°,求出∠EBO=30°,根据OB=2,求出OE、BE即可.
解答:解:过B作BE⊥x轴于E,过A作AD⊥x轴于D,
∵A(2,2
3
),
∴OD=2=OB,AD=2
3

在Rt△AOD中,tan∠AOD=
AD
OD
=
2
3
2
=
3

∴∠AOD=60°,
∵AD⊥x轴,AB切⊙O于B,
∴∠ADO=∠ABO=90°,
在Rt△ABO和Rt△ADO中
OA=OA
OB=OD

∴Rt△ABO≌Rt△ADO,
∴∠AOD=∠AOB=60°,
∴∠BOE=60°,
∴∠EBO=30°,
∴OE=1,
由勾股定理得:BE=
3

∴B(-1,
3
),
故选B.
点评:本题考查了全等三角形的性质和判定,勾股定理,切线的性质,锐角三角函数值等知识点的运用,关键是求出OE和BE的长,主要考查学生运用定理进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为5,AB=5
3
,C是圆上一点,则∠ACB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为3,直径AB⊥弦CD,垂足为E,点F是BC的中点,那么EF2+OF2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为
5
,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有
 
个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为13cm,弦AB∥CD,两弦位于圆心O的两侧,AB=24cm,CD=10cm,求AB和CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径为5,P是弦MN上的一点,且MP:PN=1:2.若PA=2,则MN的长为
6
2
6
2

查看答案和解析>>

同步练习册答案