精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,P是CD上一动点(与C、D不重合),使三角板的直角顶点与P重合,并且一条直角边经过点B,另一条直角边所在的直线交于点E.
探究:(1)观察操作结果,你发现哪个三角形与△BPC相似?为什么?
(2)当P点位于CD的中点时,(1)中两个相似三角形周长的比是多少?
分析:(1)根据两角对应相等的两三角形相似进而判定得出即可;
(2)根据当P点位于CD的中点时,△PDE∽△BCP或△BPE∽△BCP,进而得出周长比即可.
解答:解:(1)如图1,
另一条直角边与AD交于点E时,则有△PDE∽△BCP,
理由:∵∠EPB=90°,
∴∠BPC+∠DPE=90°
∵∠PBC+∠BPC=90°,
∴∠DPE=∠BPC,
∵∠D=∠C,
∴△PDE∽△BCP;
当如图2,则有△BPE∽△BCP,
∵∠BPC+∠EPC=90°,∠EPC+∠E=90°,
∴∠E=∠BPC,
∵∠PBC=∠PBE,
∴△BPE∽△BCP;

(2)当P是CD的中点时,△PDE∽△BCP,
则有△PDE和△BCP的周长比是:
DP
PC
=
1
2

如图2⑥,当点P是CD的中点时,则有△BPE∽△BCP,△BPE和△BCP的周长比为:
BP
BC
=
5
2
点评:此题主要考查了相似三角形的判定与性质以及分类讨论思想的应用,根据已知得出不同图形进行讨论得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案