精英家教网 > 初中数学 > 题目详情

如图,点D在反比例函数数学公式( k>0)上,点C在x轴的正半轴上且坐标为(4,0),△ODC是以CO为斜边的等腰直角三角形.

(1)求点D的坐标;
(2)求反比例函数的解析式;
(3)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,垂足分别为点A和点E,连结OB,将四边形OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F.求直线BA′的解析式.

解:(1)过D作DG⊥x轴,交x轴于点G,
∵△ODC为等腰直角三角形,
∴G为OC的中点,即DG为斜边上的中线,
∴DG=OG=OC=2,
∴D(2,2),

(2)代入反比例解析式得:2=,即k=4,
则反比例解析式为y=

(3)∵点B是y=上一点,B的横坐标为1,
∴y==4,
∴B(1,4),
由折叠可知:△BOA′≌△BOA,
∵OA=1,AB=4,
∴BE=A′O=1,OE=BA′=4,
又∵∠OAB=90°,∠A′FO=∠BFE,
∴∠BA′O=∠OEB=90°,
∴△OA′F≌△BFE(AAS),
∴A′F=EF,
∵OE=EF+OF=4,
∴A′F+OF=4,
在Rt△A′OF中,由勾股定理得OA′2+A′F2=OF2
设OF=x,则A′F=4-x,
∴12+(4-x)2=x2
∴x=
∴OF=,即F(0,),
设直线BA′解析式为y=kx+b,
将B(1,4)与F(0,)坐标代入,
得:
解得:
则线BA′解析式为
分析:(1)过D作DG⊥x轴,交x轴于点G,由三角形ODC为等腰直角三角形,利用三线合一得到G为OC的中点,利用直角三角形斜边上的中线等于斜边的一半求出DG与OG的长,确定出D坐标;
(2)代入反比例解析式中求出k的值,即可确定出反比例解析式;
(3)将B的横坐标1代入反比例解析式中求出y的值,确定出B的纵坐标,由折叠的性质得到△BOA′≌△BOA,即为BA与BA′的长相等,再利用AAS得出△OA′F≌△BFE,利用全等三角形对应边相等得到A′F=EF,由OE=EF+OF=4,得到A′F+OF=4,在Rt△A′OF中,由勾股定理得OA′2+A′F2=OF2,设OF=x,则A′F=4-x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出OF的长,进而得出F的坐标,设直线A′B的解析式为y=kx+b,将B与F的坐标代入求出k与b的值,即可确定出直线A′B的解析式;
点评:此题考查了反比例综合题,涉及的知识有:折叠的性质,相似三角形的判定与性质,平行四边形的判定与性质,坐标与图形性质,勾股定理,以及全等三角形的判定与性质,是一道综合性较强的压轴题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=
m
x
(m≠0)的图象相交于A、B两点,且点B的纵坐标为-
1
2
,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数和一次函数的关系式;
(2)直接写出反比例函数值大于一次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点D在反比例函y=
k
x
(k>0)
的图象上,△ODC是以CO为斜边的等腰直角三角形,且C (4,0).
(1)求k的值;
(2)将线段DC平移至线段D1C1,D1在x轴的负半轴上,C1在双曲线y=
k
x
上,求点D1的坐标;
(3)如图2,双曲线y=
k
x
 的图象上有两个动点A(a,m),B(3a,b),(a>0),求S△OAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,点D在反比例函数学公式的图象上,△ODC是以CO为斜边的等腰直角三角形,且C (4,0).
(1)求k的值;
(2)将线段DC平移至线段D1C1,D1在x轴的负半轴上,C1在双曲线数学公式上,求点D1的坐标;
(3)如图2,双曲线数学公式 的图象上有两个动点A(a,m),B(3a,b),(a>0),求S△OAB的值.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省宿迁市中考数学二模试卷(解析版) 题型:解答题

如图,已知在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象相交于A、B两点,且点B的纵坐标为,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数和一次函数的关系式;
(2)直接写出反比例函数值大于一次函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省兴化市九年级一模数学试卷(解析版) 题型:填空题

如图,Rt△AOB中,O为坐标原点,∠AOB=90°,OA∶OB=1∶2,如果点A在反比例函

数y=(x>0)的图像 上运动,那么点B在函数          (填函数解析式)的图像上运动.

 

查看答案和解析>>

同步练习册答案