精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):

以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:

∠ABC=  ,∠A′BC=  ,OA+OB+OC=  

考点:

作图-旋转变换.

专题:

作图题.

分析:

解直角三角形求出∠ABC=30°,然后过点B作BC的垂线,在截取A′B=AB,再以点A′为圆心,以AO为半径画弧,以点B为圆心,以BO为半径画弧,两弧相交于点O′,连接A′O′、BO′,即可得到△A′O′B;根据旋转角与∠ABC的度数,相加即可得到∠A′BC;

根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.

解答:

解:∵∠C=90°,AC=1,BC=

∴tan∠ABC===

∴∠ABC=30°,

∵△AOB绕点B顺时针方向旋转60°,

∴△A′O′B如图所示;

∠A′BC=∠ABC+60°=30°+60°=90°,

∵∠C=90°,AC=1,∠ABC=30°,

∴AB=2AC=2,

∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,

∴A′B=AB=2,BO=BO′,A′O′=AO,

∴△BOO′是等边三角形,

∴BO=OO′,∠BOO′=∠BO′O=60°,

∵∠AOC=∠COB=BOA=120°,

∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,

∴C、O、A′、O′四点共线,

在Rt△A′BC中,A′C===

∴OA+OB+OC=A′O′+OO′+OC=A′C=

故答案为:30°;90°;

点评:

本题考查了利用旋转变换作图,旋转变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,等边三角形的判定与性质,综合性较强,最后一问求出C、O、A′、O′四点共线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案