精英家教网 > 初中数学 > 题目详情
(2013•黄石)如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=-x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=-
1
2
时,y取最大值
25
4

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=
1
2
x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=
(x2-x1)2+(y2-y1)2
分析:(1)先根据抛物线y=-x2+bx+c,当x=-
1
2
时,y取最大值
25
4
,得到抛物线的顶点坐标为(-
1
2
25
4
),可写出抛物线的顶点式,再根据抛物线的解析式求出A、C的坐标,然后将A、C的坐标代入
y=kx+m,运用待定系数法即可求出直线的解析式;
(2)根据等高三角形的面积比等于底边比,因此两三角形的面积比实际是AP:PC=1:3,即3AP=PC,可先求出AC的长,然后分情况讨论:
①当P在线段AC上时,过点P作PH⊥x轴,点H为垂足.由PH∥OC,根据平行线分线段成比例定理求出PH的长,进而求出P点的坐标;
②当P在CA的延长线上时,由PG∥OC,根据平行线分线段成比例定理求出PG的长,进而求出P点的坐标;
(3)联立两函数的解析式,设直线y=
1
2
x+a与抛物线y=-x2-x+6的交点为M(xM,yM),N(xN,yN)(M在N左侧),则xM、xN是方程x2+
3
2
x+a-6=0的两个根,由一元二次方程根与系数关系得,xM+xN=-
3
2
,xM•xN=a-6,进而求出yM•yN=
1
4
(a-6)-
3
4
a+a2
①由于∠MON=90°,根据勾股定理得出OM2+ON2=MN2,据此列出关于a的方程,解方程即可求出a的值;
②由于∠MON>90°,根据勾股定理得出OM2+ON2<MN2,据此列出关于a的不等式,解不等式即可求出a的范围.
解答:解:(1)∵抛物线y=-x2+bx+c,当x=-
1
2
时,y取最大值
25
4

∴抛物线的解析式是:y=-(x+
1
2
2+
25
4
,即y=-x2-x+6;
当x=0时,y=6,即C点坐标是(0,6),
当y=0时,-x2-x+6=0,解得:x=2或-3,
即A点坐标是(-3,0),B点坐标是(2,0).
将A(-3,0),C(0,6)代入直线AC的解析式y=kx+m,
-3k+m=0
m=6

解得:
k=2
m=6

则直线的解析式是:y=2x+6;

(2)过点B作BD⊥AC,D为垂足,
∵S△ABP:S△BPC=1:3,
1
2
AP•BD
1
2
PC•BD
=
1
3

∴AP:PC=1:3,
由勾股定理,得AC=
OA2+OC2
=3
5

①当点P为线段AC上一点时,过点P作PH⊥x轴,点H为垂足.
∵PH∥OC,
PH
OC
=
AP
AC
=
1
4

∴PH=
3
2

3
2
=2x+6,
∴x=-
9
4

∴点P(-
9
4
3
2
);
当点P在CA延长线时,作PG⊥x轴,点G为垂足.
∵AP:PC=1:3,
∴AP:AC=1:2.
∵PG∥OC,
PG
OC
=
AP
AC
=
1
2

∴PG=3,
∴-3=2x+6,x=-
9
2

∴点P(-
9
2
,-3).
综上所述,点P的坐标为(-
9
4
3
2
)或(-
9
2
,-3).

(3)设直线y=
1
2
x+a与抛物线y=-x2-x+6的交点为M(xM,yM),N(xN,yN)(M在N左侧).
x1=xM
y1=yN
x2=xN
y2=yN
为方程组
y=
1
2
x+a
y=-x2-x+6
的解,
由方程组消去y整理,得:x2+
3
2
x+a-6=0,
∴xM、xN是方程x2+
3
2
x+a-6=0的两个根,
∴xM+xN=-
3
2
,xM•xN=a-6,
∴yM•yN=(
1
2
xM+a)(
1
2
xN+a)=
1
4
xM•xN+
a
2
(xM+xN)+a2=
1
4
(a-6)-
3
4
a+a2
①存在a的值,使得∠MON=90°.理由如下:
∵∠MON=90°,
∴OM2+ON2=MN2,即
x
2
M
+
y
2
M
+
x
2
N
+
y
2
N
=(xM-xN2+(yM-yN2
化简得xM•xN+yM•yN=0,
∴(a-6)+
1
4
(a-6)-
3
4
a+a2=0,
整理,得2a2+a-15=0,
解得a1=-3,a2=
5
2

∴存在a值,使得∠MON=90°,其值为a=-3或a=
5
2

②∵∠MON>90°,
∴OM2+ON2<MN2,即
x
2
M
+
y
2
M
+
x
2
N
+
y
2
N
<(xM-xN2+(yM-yN2
化简得xM•xN+yM•yN<0,
∴(a-6)+
1
4
(a-6)-
3
4
a+a2<0,
整理,得2a2+a-15<0,
解得-3<a<
5
2

∴当∠MON>90°时,a的取值范围是-3<a<
5
2
点评:本题考查了二次函数的综合题型,其中涉及到运用待定系数法求函数的解析式,二次函数的性质,三角形的面积,平行线分线段成比例定理,函数与方程的关系,勾股定理,钝角三角形三边的关系等知识,综合性较强,难度较大.运用分类讨论、数形结合及方程思想是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图,已知某容器都是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.
(1)如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图3,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=90°,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.

查看答案和解析>>

同步练习册答案