如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且
,弦AD的延长线交切线PC于点E,连接BC.
(1)判断OB和BP的数量关系,并说明理由;
(2)若⊙O的半径为2,求AE的长.
![]()
(1)OB=BP,理由见解析(2)3
【解析】解:(1)OB=BP。理由如下:连接OC,
![]()
∵PC切⊙O于点C,∴∠OCP=90°。
∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°。
∴∠COP=60°。∴∠P=30°。
在Rt△OCP中,OC=
OP=OB=BP。
(2)由(1)得OB=
OP。
∵⊙O的半径是2,∴AP=3OB=3×2=6。
∵
,∴∠CAD=∠BAC=30°。∴∠BAD=60°。
∵∠P=30°,∴∠E=90°。
在Rt△AEP中,AE=
AP=
×6=3。
(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP。
(2)由(1)可得OB=
OP,即可求得AP的长,又由
,即可得∠CAD=∠BAC=30°,从而求得∠E=90°,从而在Rt△AEP中求得答案。
科目:初中数学 来源: 题型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com