精英家教网 > 初中数学 > 题目详情
如图,已知△ABC是等边三角形,AB=5cm,AD⊥BC,DE⊥AB,DF⊥AC,则∠BAD=
30°
30°
,∠ADF=
60°
60°
,BD=
2.5cm
2.5cm
,∠EDF=
120°
120°
分析:根据等边三角形的性质以及垂线的性质进行解答.
解答:解:∵△ABC是等边三角形,AD⊥BC,AB=5cm,
∴BD=CD=
1
2
BC=2.5cm,∠BAD=∠CAD=30°,
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
∵∠BAD=∠CAD=30°,
∴∠ADE=∠ADF=60°,
∴∠EDF=120°,
故答案为30°,60°,2.5cm,120°.
点评:本题主要考查等边三角形的性质的知识点,解答本题的关键是等边三角形的边和角等特征,此题难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案