精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=-x2+2x+3交x轴于A、B两点(点A在点B的左侧),与y轴精英家教网交于点C.
(1)求点A、B、C的坐标.
(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积.
分析:(1)根据-x2+2x+3=0,解得x1=3、x2=-1,即点A(-1,0),B(3,0),根据抛物线y=-x2+2x+3交y轴于点C,可知当x=0时,y=3,所以C(0,3);
(2)抛物线y=-x2+2x+3的点顶为M,根据顶点公式可知M(1,4),过点M作ME⊥AB于E,则ME=4,OE=1,BE=2,OC=3,所以S△BCM=S四边形COBM-S△BOC=3.
解答:精英家教网解:(1)∵抛物线y=-x2+2x+3交x轴于A、B两点,
∴令y=0,则0=-x2+2x+3,
∴(x-3)(x+1)=0
∴x1=3,x2=-1,
∴点A(-1,0),B(3,0),
又∵抛物线y=-x2+2x+3交y轴于点C,
∴点C(0,3).

(2)把y=-x2+2x+3配方得y=-(x-1)2+4,
∵抛物线y=-x2+2x+3的顶点为M,
∴M(1,4),
∴过点M作ME⊥AB于E,则ME=4,OE=1,
∴BE=OB-OE=3-1=2,OC=3,
∴S△BCM=S四边形COBM-S△BOC
=S梯形COEM+S△BEM-S△BOC
=
(3+4)×1
2
+
2×4
2
-
3×3
2

=3.
点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法以及二次函数和一元二次方程的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案