精英家教网 > 初中数学 > 题目详情
若y轴正半轴上的点P到x轴的距离为4,则点P的坐标是(  )
分析:y轴上的点的横坐标为0,到x轴的距离为4,则纵坐标为±4,进而根据在正半轴可得点P的坐标.
解答:解:∵到x轴的距离为4,
∴纵坐标为±4,
∵点P在y轴正半轴上,
∴点P的坐标是(0,4).
故选B.
点评:考查点的坐标的相关知识;用到的知识点为:y轴上的点的横坐标为0;y轴正半轴上的点的纵坐标为正数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△精英家教网OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,若设AC=x,请用x表示线段AD的长.
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时直线EF∥直线BO?这时⊙F和直线BO相切的位置关系如何?请给予说明.
(4)G为CD与⊙F的交点,H为直线DF上的一个动点,连接HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点P是x轴正半轴的一个动点,过点P作x轴的垂线PA交双曲线y=
1x
于点A,连接OA.
精英家教网
(1)如图甲,当点P在x轴的正方向上运动时,Rt△AOP的面积大小是否变化答:
 
(请填“变化”或“不变化”)
若不变,请求出Rt△AOP的面积=
 
;若改变,试说明理由(自行思索,不必作答);
(2)如图乙,在x轴上的点P的右侧有一点D,过点D作x轴的垂线交双曲线于点B,连接BO交AP于C,设△AOP的面积是S1,梯形BCPD的面积为S2,则S1与S2的大小关系是S1
 
S2(请填“>”、“<”或“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐精英家教网标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宁德)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合
(1)直接写出点A、B的坐标:A(
6
6
0
0
)、B(
0
0
-8
-8
);
(2)若抛物线y=-
1
3
x2+bx+c经过A、B两点,则这条抛物线的解析式是
y=-
1
3
x2+
10
3
x-8
y=-
1
3
x2+
10
3
x-8

(3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由;
(4)当
7
2
≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值.

查看答案和解析>>

同步练习册答案