精英家教网 > 初中数学 > 题目详情
为了预防“流感”,某学校对教室进行“药熏”消毒.下图反映了从药物燃烧开始,室内每立方米的含药量y(毫克)与时间x(分钟)之间的函数关系.已知在药物燃烧阶段,y与x之间具有二次函数关系;药物燃烧结束后,y与x成反比例.
(1)试求药物燃烧阶段,y关于x的函数解析式并写出取值范围;
(2)若每立方米的含药量不低于20毫克且持续时间超过25分钟,才能达到有效消毒,试问这次“药熏”消毒是否有效?

【答案】分析:(1)设y=ax2+bx+c(a≠0),将二次函数图象上三点(0,0),(5,35),(10,60)代入函数关系式可求a、b、c的值,确定函数式;
(2)设反比例函数关系式y=,将点(10,60)代入求k,再把y=20分别代入两个函数关系式求x,再作差即可.
解答:解:(1)由已知设y=ax2+bx+c(a≠0),
根据图象,x=0时,y=0;x=5时,y=35;x=10时,y=60;
所以
解得
所以函数解析式为(0≤x≤10);

(2)0≤x≤10时,令y=20,得
解得,
当x≥10时,由已知令
又x=10时,y=60;所以k=600,
由y=20,得x=30;
即含药量不低于20毫克的时间为超过25分钟,所以消毒有效.
点评:本题考查了二次函数、反比例函数的实际应用.关键是建立两个函数关系式,明确自变量的取值范围,当函数值相同时,能求出对应的自变量的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入精英家教网教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

查看答案和解析>>

科目:初中数学 来源: 题型:

为了预防流感,某校对教室进行“药熏消毒”.已知药物燃烧阶段室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例.燃烧完毕后,y与x成反比例(如图).根据图中精英家教网信息解答下列问题:
(1)求药物燃烧时,y与x函数关系式及自变量的取值范围;
(2)求药物燃烧后,y与x函数关系式及自变量的取值范围;
(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒副作用.那么从有人开始消毒,经多长时间后学生才可以回教室.

查看答案和解析>>

科目:初中数学 来源: 题型:

为了预防“流感”,某学校对教室采用“药熏”消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示).现测得药物4分钟精英家教网燃毕,此时室内空气中每立方米含药量为8毫克.请根据题中所提供的信息,解答下列问题:
(1)求药物燃烧时,y关于x的函数解析式及定义域;
(2)求药物燃烧完后,y关于x的函数解析式及定义域;
(3)研究表明,当空气中每立方米的含药量不低于2毫克时,才能有效地杀灭空气中的病菌,那么此次消毒有效时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=
at
(a为常数),如图所示.据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?

查看答案和解析>>

科目:初中数学 来源: 题型:

为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=
at
(a为常数),如图所示.据图中提供的信息,解答下列问题:
(1)求a的值;
(2)写出从药物释放过程中,y与t之间的函数关系式及相应的自变量的取值范围;
(3)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?(药物释放过程中,学生一律不能进教室)

查看答案和解析>>

同步练习册答案