精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠C=90°,
(1)用直尺和圆规作出∠CBA的平分线BE,交直角边AC于E;(保留作图痕迹)
(2)沿BE折叠这个三角形,使点C与AB边上的一点D重合.当∠A满足什么条件时,点D恰好为AB的中点?利用此条件证明D为AB的中点.

【答案】分析:(1)①以点B为圆心,任意长为半径画弧,与AB、BC交于M、N两点,②分别以M、N为圆心,以大于MN的长画弧,两弧交于P点,③连接BP交AC与E点;
(2)点D为AB的中点,即DE垂直平分AB,则∠A=∠EBA,由折叠可知∠EBA=∠EBC,而∠A+∠EBA+∠EBC=90°,从而可求∠A.
解答:解:(1)如图所示.

(2)①由折叠可知,∠EBA=∠EBC,
当D为AB的中点时,DE垂直平分AB,
根据垂直平分线的性质可知,∠A=∠EBA,
在Rt△ABC中,∠A+∠CBA=90°,
即∠A+∠EBA+∠EBC=90°,即∠A=30°,
所以,当∠A=30°时,点D恰好为AB的中点.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案