精英家教网 > 初中数学 > 题目详情
23、已知,如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.
分析:根据垂直的定义得到∠ADF=∠EFC=90°,再根据同位角相等,两直线平行得到AD∥EF,利用直线平行的性质有∠2=∠DAC;由∠4=∠C,根据同位角相等,两直线平行得到DG∥AC,再利用直线平行的性质得∠1=∠DAC,最后利用等量代换即可得到结论.
解答:解:∵AD⊥BC,EF⊥BC,
∴∠ADF=∠EFC=90°,
∴AD∥EF,
∴∠2=∠DAC,
又∵∠4=∠C,
∴DG∥AC,
∴∠1=∠DAC,
∴∠1=∠2.
点评:本题考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知:如图,AD∥BC,ED∥BF,且AF=CE.
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD=BC,AC=BD.试判断OD、OC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)

即:∠3=∠4
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

同步练习册答案