精英家教网 > 初中数学 > 题目详情

【解题思路】如图:延长MA交CB于点E. CD=DN+CN=DN+ME.

中,背水坡AB的坡比可知

。又AB=20 m,所以AE= ×20=10m,BE=20×= m

所以NC=ME=MA=AE=1.7+10=11.7m

中,∠AMN=30°,MN=CE=CB+BE=(30+)m

DN=

所以旗杆高度CD=DN+CN=DN+ME=11.7+= ≈36.0m

【答案】 ≈36.0

在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,BC=AF,延长DF与BA的延长线交于E.

⑴求证△ABD为等腰三角形.

⑵求证AC•AF=DF•FE

【解题思路】(1)利用同角的补角相等,同弧所对的圆周角相等,等量代换;

(2)证等积式就要找三角形相似,发现AC、AF、FE所在的三角形,且利用等弧对等弦,同圆中等弦对等弧,发现DF可以被DC替换,进而求解。

【答案】⑴由圆的性质知∠MCD=∠DAB、∠DCA=∠DBA,而∠MCD=∠DCA,所以∠DBA=∠DAB,故△ABD为等腰三角形.

⑵∵∠DBA=∠DAB

∴弧AD=弧BD

又∵BC=AF

∴弧BC=弧AF、∠CDB=∠FDA

∴弧CD=弧DF

∴CD=DF

再由“圆的内接四边形外角等于它的内对角”知

∠AFE=∠DBA=∠DCA①,∠FAE=∠BDE

∴∠CDA=∠CDB+∠BDA=∠FDA+∠BDA=∠BDE=∠FAE②   由①②得△DCA∽△FAE

∴AC:FE=CD:AF

∴AC•AF= CD •FE

而CD=DF,

∴AC•AF=DF•FE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解题:
【几何模型】
条件:如图1,A、B是直线l同旁的两个定点.
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′P+PB=A′B,
由“两点之间,线段最短”可知,点P即为所求的点.

【模型应用】
如图2所示,两个村子A、B在一条河CD的同侧,A、B两村到河边的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送水,铺设水管的工程费用为每千米15000元,请你在CD上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用W.

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题】如图甲,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.
【探究】解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.
(1)△P′PB是
 
三角形,△PP′A是
 
三角形,∠BPC=
 
°;
(2)利用△BPC可以求出△ABC的边长为
 

【拓展应用】
如图丙,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1;
(3)求∠BPC度数的大小;
(4)求正方形ABCD的边长.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2013届江苏省南京市鼓楼区中考二模数学试卷(带解析) 题型:解答题

【提出问题】
如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?
【探究过程】
小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?
如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.
以下是几位同学的对话:
A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.
B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.
(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)
【解决问题】
根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省南京市鼓楼区中考二模数学试卷(解析版) 题型:解答题

【提出问题】

如图①,在梯形ABCD中,AD//BC,AC、BD交于点E,∠BEC=n°,若AD=a,BC=b,则梯形ABCD的面积最大是多少?

【探究过程】

小明提出:可以从特殊情况开始探究,如图②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,则梯形ABCD的面积最大是多少?

如图③,过点D做DE//AC交BC的延长线于点E,那么梯形ABCD的面积就等于△DBE的面积,求梯形ABCD的面积最大值就是求△DBE的面积最大值.如果设AC=x,BD=y,那么S△DBE=xy.

以下是几位同学的对话:

A同学:因为y=,所以S△DBE=x,求这个函数的最大值即可.

B同学:我们知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值

C同学:△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我们先将所有满足BE=10的直角△DBE都找出来,然后在其中寻找高最大的△DBE即可.

(1)请选择A同学或者B同学的方法,完成解题过程.

(2)请帮C同学在图③中画出所有满足条件的点D,并标出使△DBE面积最大的点D1.(保留作图痕迹,可适当说明画图过程)

【解决问题】

根据对特殊情况的探究经验,请在图①中画出面积最大的梯形ABCD的顶点D1,并直接写出梯形ABCD面积的最大值.

 

查看答案和解析>>

同步练习册答案