精英家教网 > 初中数学 > 题目详情

(1)是否存在正整数m,n,使得m(m+2)=n(n+1)?
(2)设k(k≥3)是给定的正整数,是否存在正整数m,n,使得m(m+k)=n(n+1)?

解:(1)答案是否定的.若存在正整数m,n,使得m(m+2)=n(n+1),则(m+1)2=n2+n+1,显然n>1,于是n2<n2+n+1<(n+1)2,所以,n2+n+1不是平方数,矛盾.
(2)当k=3时,若存在正整数m,n,满足m(m+3)=n(n+1),则4m2+12m=4n2+4n,(2m+3)2=(2n+1)2+8,(2m+3-2n-1)(2m+3+2n+1)=8,(m-n+1)(m+n+2)=2,而m+n+2>2,故上式不可能成立.
当k≥4时,若k=2t(t是不小于2的整数)为偶数,取m=t2-t,n=t2-1则m(m+k)=(t2-t)(t2+t)=t4-t2
n(n+1)=(t2-1)t2=t4-t2,因此这样的(m,n)满足条件.若k=2t+1(t是不小于2的整数)为奇数,取
m=,n=则m(m+k)=+2t+1)=(t4+2t3-t2-2t),n(n+1)==(t4+2t3-t2-2t),因此这样的(m,n)满足条件.综上所述,当k=3时,答案是否定的;当k≥4时,答案是肯定的.
分析:(1)m(m+2)=n(n+1)可以变化成(m+1)2=n2+n+1,若存在,则n2+n+1即是一个平方数,即可判断;
(2)当k=3时,利用与(1)相同的方法即可证明;
当k≥4时,可以分k是偶数与奇数两种情况进行讨论,当k是偶数时,可以设k=2t(t是不小于2的整数),代入式子进行讨论;当k是奇数时,可以设k=t+1(t是不小于2的整数),代入即可判断.
点评:本题主要考查了整数的奇偶性,正确对k的范围进行分类,根据k的奇偶性对已知的式子m(m+k)=n(n+1)进行变形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为5cm,动点P从点C出发,沿折线C-B-A-D向终点D运动,速度为acm/s;动点Q从点B出发,沿对角线BD向终点D运动,速度为
2
cm/s.当其中一点到达自己的终点时,另一点也停止运动.当点P、点Q同时从各自的精英家教网起点运动时,以PQ为直径的⊙O与直线BD的位置关系也随之变化,设运动时间为t(s).
(1)写出在运动过程中,⊙O与直线BD所有可能的位置关系
 

(2)在运动过程中,若a=3,求⊙O与直线BD相切时t的值;
(3)探究:在整个运动过程中,是否存在正整数a,使得⊙O与直线BD相切两次?若存在,请直接写出符合条件的两个正整数a及相应的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)是否存在正整数m,n,使得m(m+2)=n(n+1)?
(2)设k(k≥3)是给定的正整数,是否存在正整数m,n,使得m(m+k)=n(n+1)?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y1=x2+4x+1的图象向上平移m个单位(m>0)得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成y2=a(x-h)2+k的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在-3<x≤-
32
时对应的函数值y的取值范围;
(3)设一次函数y3=nx+3(n≠0),问是否存在正整数n使得(2)中函精英家教网数的函数值y=y3时,对应的x的值为-1<x<0?若存在,求出n的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下面图形,然后解答问题(1)、(2)、(3).
图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.

(1)图②有
5
5
个三角形;图③有
9
9
个三角形;
(2)按上面的方法继续下去,第n个图形中有
4n-3
4n-3
个三角形(用n的代数式表示结论).
(3)是否存在正整数n,使得第n个图形中有2013个三角形?若存在,求出n的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案