精英家教网 > 初中数学 > 题目详情

(9分)已知二次函数的图象与x轴相交于A、B两点(A

左B右),与y轴相交于点C,顶点为D.

(1)求m的取值范围;

(2)当点A的坐标为,求点B的坐标;

(3)当BC⊥CD时,求m的值.

 

解:(1)∵二次函数的图象与x轴相交于A、B两点

∴b2-4ac>0,∴4+4m>0,······································································· 2分

解得:m>-1························································································· 3分

(2)解法一:

∵二次函数的图象的对称轴为直线x=-=1························· 4分

∴根据抛物线的对称性得点B的坐标为(5,0)··············································· 6分

解法二:

把x=-3,y=0代入中得m=15··············································· 4分

∴二次函数的表达式为

令y=0得········································································ 5分

解得x1=-3,x2=5

∴点B的坐标为(5,0)··········································································· 6分

(3)如图,过D作DE⊥y轴,垂足为E.

∴∠DEC=∠COB=90°,

当BC⊥CD时,∠DCE +∠BCO=90°,

∵∠DEC=90°,∴∠DCE +∠EDC=90°,∴∠EDC=∠BCO.

∴△DEC∽△COB,∴.····························································· 7分

由题意得:OE=m+1,OC=m,DE=1,∴EC=1.∴

∴OB=m,∴B的坐标为(m,0).······························································ 8分

将(m,0)代入得:-m 2+2 m + m=0.

解得:m1=0(舍去), m2=3.·································································· 9分

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴交点的横坐标分别为x1=4,x2=-2,且图象经过点(0,-4),求这个二次函数的解析式,并求出最大(或最小)值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴两交点间的距离为2,若将图象沿y轴方向向上平移3个单位,则图象恰好经过原点,且与x轴两交点间的距离为4,求原二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象与y轴的交点坐标为(0,a),与x轴的交点坐标为(b,0)和(-b,0),若a>0,则函数解析式为(  )
A、y=
a
b2
x2+a
B、y=-
a
b2
x2+a
C、y=-
a
b2
x2-a
D、y=
a
b2
x2-a

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴交于点A(-1,0)和点B(3,0),且与直线y=kx-4交y轴于点C. 
(1)求这个二次函数的解析式;
(2)如果直线y=kx-4经过二次函数的顶点D,且与x轴交于点E,△AEC的面积与△BCD的面积是否相等?如果相等,请给出证明;如果不相等,请说明理由;
(3)求sin∠ACB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值为2,求二次函数的解析式.

查看答案和解析>>

同步练习册答案