【题目】阅读下面材料,回答问题
距离能够产生美.
唐代著名文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无.
当代印度著名诗人泰戈尔在《世界上最遥远的距离》中写道:
“世界上最遥远的距离
不是瞬间便无处寻觅
而是尚未相遇
便注定无法相聚”
距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.
已知点 A,B 在数轴上分别表示有理数 a,b,A,B 两点之间的距离表示为 AB.
(
)当 A,B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,
.
(
)当 A,B 两点都不在原点时,
①如图 2,点 A,B 都在原点的右边,
;
②如图 3,点 A,B 都在原点的左边,
;
③如图 4,点 A,B 在原点的两边,
.
综上,数轴上 A,B 两点的距离
.
利用上述结论,回答以下三个问题:
![]()
(1)若数轴上表示
和
的两点之间的距离是
,则
;
(2)若代数式
取最小值时,则
的取值范围是 ;
(3)若未知数
,
满足
,则代数式
的最大值是 ,最小值是 .
【答案】(1)-6或2;(2)-1≤x≤2;(3)7,-1;
【解析】
(1)把问题转化为绝对值方程,即可解决问题.
(2)若代数式|x+1|+|x-2|取最小值时,表示在数轴上找一点x,到-1和2的距离之和最小,显然这个点x在-1和2之间(包括-1,2),由此即可解决问题.
(3))因为(|x-1|+|x-3|)(|y-2|+|y+1|)=6,又因为|x-1|+|x-3|的最小值为2,|y-2|+|y+1|的最小值为3,所以1≤x≤3,-1≤y≤2,由此不难得到答案.
(1)若数轴上表示x和-2的两点之间的距离是4,
则|x+2|=4,
解得x=-2-4=-6或x=-2+4=2.
故答案为-6或2.
(2)若代数式|x+1|+|x-2|取最小值时,表示在数轴上找一点x,到-1和2的距离之和最小,显然这个点x在-1和2之间(包括-1,2),
∴x的取值范围是-1≤x≤2,
故答案为-1≤x≤2.
(3)∵(|x-1|+|x-3|)(|y-2|+|y+1|)=6,
又∵|x-1|+|x-3|的最小值为2,|y-2|+|y+1|的最小值为3,
∴1≤x≤3,-1≤y≤2,
∴代数式x+2y的最大值是7,最小值是-1.
故答案为7,-1.
科目:初中数学 来源: 题型:
【题目】如图,点A、B、C在一条直线上,
,
均为等边三角形,连接AE、CD.AE分别交CD、BD于点M.P.CD交BE于点Q.
![]()
求证:(1)
;
(2)连接MB,MB平分
吗?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的关系是___;
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达( )
A.从不 B.很少 C.有时 D.常常 E.总是
答题的学生在这五个选项中只能选择一项.下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.
![]()
根据以上信息,解答下列问题:
(1)该区共有 名初二年级的学生参加了本次问卷调查;
(2)请把这幅条形统计图补充完整;
(3)在扇形统计图中,“总是”的圆心角为 .(精确到度)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:
是关于
,
的多项式,如果
,那么
叫做“对称多项式”.例如,如果
,则
显然 ,所以
是“对称多项式”.
(1)
是“对称多项式”,试说明理由;
(2)请写一个“对称多项式”,
(不多于四项);
(3)如果
和
均为“对称多项式”,那么
一定是“对称多项式”吗?如果一定,请说明理由,如果不一定,请举例说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)直线AD与BC有何位置关系?请说明理由.
(2)求∠DBE的度数.
(3)若把AD左右平行移动,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出此时∠ADB的度数;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a﹣b,B、C两站之间的距离BC=2a﹣b,B、D两站之间的距离BD=
.
(1)求A、C两站之间的距离AC.
(2)若A、C两站之间的距离AC=90km,求C、D两站之间的距离CD.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=
(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:
![]()
若n=13,则第2018次“F”运算的结果是( )
A. 1 B. 4 C. 2018 D. 42018
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长为1,宽为a的矩形纸片(
),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为( )![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com