精英家教网 > 初中数学 > 题目详情

如图所示,在直角坐标系中,平行四边形OABC的顶点坐标B(6,3),C(2,3).

(1)求出过O、A、B三点的抛物线解析式;

(2)若直线恰好将平行四边形OABC的面积分成相等的两部分,试求b的值

(3)若与x轴、y轴的交点分别记为M、N,(1)中抛物线的对称轴与此抛物线及x轴的交点分别记作点D、点E,试判断△OMN与△OED是否相似?

答案:
解析:

  (1)如图,分别过点C、B作CF⊥轴、BH⊥轴,垂足分别为点F、点H,则四边形CFHB为矩形,已知B(6,3),C(2,3),

  则AH=OF=2,OH=6,可得OA=OH-AH=6-2=4.故点A的坐标为(4,0).

  设抛物线解析式为,由于抛物线过三点A(4,0),B(6,3),O(0,0)则有

  解之得

  故其解析式为  3分

  (2)如图,连接OB,取OB的中点P,作PQ⊥轴,则PQ=BH=,OQ=OH=3,

  所以点P的坐标为(3,)  4分

  过点P的直线一定会平分平行四边形OABC的面积,

  因此直线过点P即可  5分

  故有=-×3+b,解之得b=3  6分

  (3)答:它们相似  7分

  易知M、N的坐标分别为(6,0)、(0,3);

  点D、点E的坐标分别为(2,-1)、(2,0)  8分

  可知线段OM=6,ON=3,OE=2,DE=1,

  在△OMN与△ODE中

  ∵

  ∴

  又∠MON=∠OED,

  ∴△OMN∽△OED  10分


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,精英家教网sin∠BOA=
35

求:(1)点B的坐标;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大丰市一模)如图所示,在直角坐标平面内,函数y=
mx
(x>0,m是常数)
的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

1.若△ABD的面积为4,求点B的坐标

2.求证:DC∥AB

3.四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

【小题1】若△ABD的面积为4,求点B的坐标
【小题2】求证:DC∥AB
【小题3】四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市大丰市中考数学一模试卷(解析版) 题型:解答题

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案