精英家教网 > 初中数学 > 题目详情
已知抛物线y=,与直线l:y=x+m的左交点是A,抛物线与y轴相交于点C,直线l与抛物线的对称轴相交于点E.
(1)直接写出抛物线顶点D的坐标(用含m、k的式子表示);
(2)当m=2,k=-4时,求∠ACE的大小;
(3)是否存在正实数m=k,使得抛物线在直线l下方的一段弧上有且仅有两个点P1和P2,且∠A P1E=∠A P2E=45°?如果存在,求m的值和点P1、P2的坐标;如果不存在,请说明理由.
【答案】分析:(1)根据公式法或配方法求出二次函数解析式的顶点坐标即可;
(2)根据各点坐标得出△ABE是等腰直角三角形.进而得出∠ACE=∠ABE=45°;
(3)根据抛物线y=,与直线l:y=x+m的交点得出A点坐标,进而得出符合要求p点的坐标.
解答:解:(1)可用公式法直接求出顶点D的坐标,(,k-).

(2)当m=2,k=-4时,
点C(0,-4),
直线DE为x=3,
再由
代①入②,得x2-10x-24=0,
解得,x1=-2,x2=12.
∴点A(-2,0)、点E(3,5).
设抛物线与x轴的另一交点是B,DE与x轴相交于点F(3,0),
∵CF=AF=EF=BF=5,且△ABE是等腰直角三角形.
∴点A、B、C、E都在⊙F上,∠ACE=∠ABE=45°.

(3)当m=k>0时,=x+m,
得x1=0,x2=3m+4>0.
∴点A(0,m).
显然,经过点A且平行于x轴的直线与抛物线的另一交点即为点P1(3m,m).
又∵由题意,点P2只能有一解,
再结合抛物线的对称性,可知点P2只能重合于点D.
设DE与AP1交于点G,
由DG=AG,即m-(k-)=
得m=
∴点P1(8,)、点P2(4,-).
点评:此题主要考查了二次函数的综合应用,利用函数交点坐标性质得出符合要求点的坐标是重点题型,同学们应重点关注.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是王老师休假钓鱼时的一张照片,鱼杆前部分近似呈抛物线的形状,后部分呈直线形.已知抛物线上关于对称轴对称的两点B,C之间的距离为2米,顶点O离水面的高度为2
2
3
米,人握的鱼杆底端D离水面1
1
3
米,离拐点C的水平距离1米,且仰角为45°,建立如图所示的平面直角坐标系.
(1)试根据上述信息确定抛物线BOC和CD所在直线的函数表达式;
(2)当继续向上拉鱼使其刚好露出水面时,钓杆的倾斜角增大了15°,直线部分的长度变成了1米(即ED长为1米),顶点向上增高
2
3
米,且右移
1
2
米(即顶点变为F),假设钓鱼线与人手(点D)的水平距离为2
1
4
米,那么钓鱼线的长度为多少米?

查看答案和解析>>

科目:初中数学 来源:2010-2011学年北京市石景山区京源学校九年级(上)期中数学试卷(解析版) 题型:解答题

如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山西省中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•汾阳市)如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山西省吕梁中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•汾阳市)如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案