精英家教网 > 初中数学 > 题目详情

设a、b、c、d都是正整数,且,求a的最小值.

 

【答案】

37

【解析】

试题分析:此题通过乘方的规律,求出d的值,再依次向前类推,求出a,b,c的值。

∵d4>1,∴d的最小值为2

∵c3>d4≥24=16,∴c的最小值为3

∵b2>c3≥33=27,∴b的最小值为6

∵a>b2≥36,∴a的最小值为37

故答案为37.

考点:本题考查的是有理数的乘方

点评:此题运用倒推法,以d为突破口,向前推出a,b,c值即可,比较简单.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2
x
-
3
y
=
1
4
,x,y都是正整数,则方程有
 
组正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

19、设a、b、c、d都是自然数,且a2+b2=c2+d2,证明:a+b+c+d定是合数.

查看答案和解析>>

科目:初中数学 来源: 题型:

设a,b,c,d都是正整数,而且a>b2>c3>d4>1,则a的最小值=
37
37

查看答案和解析>>

科目:初中数学 来源: 题型:

设a、b、c、d都是自然数,且a5=b4,c3=d2,a-c=17,求d-b的值.

查看答案和解析>>

同步练习册答案