【题目】综合题
(1)如图1,△ABC中,
,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,则△BCD的周长为;![]()
(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.
①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);
②在图3中补全图形,求
的度数;
③若
,则
的值为 . ![]()
【答案】
(1)3
(2)解:①如图,△
即为所求;
,②在AD上截取AH,使得AH=DE,连接OA、OD、OH.
∵点O为正方形ABCD的中心,∴
,
,
.∴△
≌△
.∴
,
.∴
.∵△
的周长等于
的长,∴
.∴△
≌△
.∴
.,③
.
【解析】(1)
AB的垂直平分线交AC于点D,
∴BD=AD,
∴
BCD的周长=BC+CD+BD=BC+AC=1+2+3,
所以答案是:3
( 2 )③作OG
CD于G,OK
AD于K,如图3所示:
![]()
设AF=8t,则CE=9t,设OG=m,
∵O为正方形ABVD的中心,
∴四边形OGDK为正方形,CG=DG=DK=KA=
AB=OG,
∴GE=CE-CG=9t-m,DE=2CG-CE=2m-9t,FK=AF-KA=8t-m,DF=2DK-AF=2m-8t,
由(2)②知
EOG ≌
HOF,
∴OE=OH,EF=FH,
在Rt
EOG和Rt
HOK中,
,
∴Rt
EOG ≌Rt
HOK(HL),
∴GE=KH,
∴EF=GE+FK=9t-m+8t-m=17t-2m,
由勾股定理得:DE2+DF2=EF2,
∴(2m-9t)2+(2m-8t)2=(17t-2m)2,
整理得:(m+6t)(m-6t)=0,
∴m=6t
∴OG=OK=6t,GE=9t-m=9t-6t=3t,FK=8t-m=2t,
∴ ![]()
所以答案是: ![]()
【考点精析】掌握比例的性质是解答本题的根本,需要知道基本性质;更比性质(交换比例的内项或外项);反比性质(交换比的前项、后项);等比性质.
科目:初中数学 来源: 题型:
【题目】如图所示,一张边长为
的正方形硬纸板,把它的四个角都剪去一个边长为工
(
为正整数)的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为
,请回答下列问题:
(1)用含有
的代数式表示
,则
(2)完成下表:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
![]()
(3)观察上表,当
取什么值时,容积
的值最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,定义直线
与双曲线
的交点
(m、n为正整数)为 “双曲格点”,双曲线
在第一象限内的部分沿着竖直方向平移或以平行于
轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.![]()
(1)①“双曲格点”
的坐标为;
②若线段
的长为1个单位长度,则n=;
(2)图中的曲线
是双曲线
的一条“派生曲线”,且经过点
,则
的解析式为 y=;
(3)画出双曲线
的“派生曲线”g(g与双曲线
不重合),使其经过“双曲格点”
、
、
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系xoy中,一次函数y=
x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.![]()
(1)求直线A′B′的解析式;
(2)若直线A′B′与直线AB相交于点C,求S△ABC:S△ABO的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算题:
(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)
(3)[45-(
-
+
)×36]÷5 (4)99
×(-36)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,数轴上,O点与C点对应的数分别是0、60(单位:单位长度),将一根质地均匀的直尺AB放在数轴上(A在B的左边),若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.
(1)直尺的长为多少个单位长度(直接写答案)
(2)如图2,直尺AB在数轴上移动,有BC=4OA,求此时A点对应的数;
(3)如图3,以OC为边搭一个横截面为长方形的不透明的篷子,将直尺放入篷内的数轴上的某处(看不到直尺的任何部分,A在B的左边),将直尺AB沿数轴以5个单位/秒的速度分别向左、向右移动,直到完全看到直尺,所经历的时间为t1、t2, 若t1﹣t2=2(秒),求直尺放入蓬内,A点对应的数为多少?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( ).
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图. ![]()
(1)这次被调查的同学共有名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com