【题目】在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x,y轴的距离中的最大值等于点Q到x,y轴的距离中的最大值,则称P,Q两点为“等距点”图中的P,Q两点即为“等距点”.
![]()
(1)已知点A的坐标为
.①在点![]()
![]()
中,为点A的“等距点”的是________;②若点B的坐标为
,且A,B两点为“等距点”,则点B的坐标为________.
(2)若![]()
两点为“等距点”,求k的值.
【答案】(1)①E,F. ②
;(2)
或
.
【解析】
(1)①找到E、F、G中到x、y轴距离最大为3的点即可;
②先分析出直线上的点到x、y轴距离中有3的点,再根据“等距点”概念进行解答即可;
(2)先分析出直线上的点到x、y轴距离中有4的点,再根据“等距点”概念进行解答即可.
解:(1)①
点
到x,y轴的距离中的最大值为3,
与点A是“等距点”的点是E,F.
②点B坐标中到x,y轴距离中,至少有一个为3的点有![]()
![]()
,
这些点中与点A符合“等距点”的定义的是
.
故答案为①E,F;②
.
(2)![]()
两点为“等距点”.
若
,则
或
,
解得
(舍去)或
.
若
时,则
,
解得
(舍去)或
.
根据“等距点”的定义知
或
符合题意.
即k的值是1或2.
科目:初中数学 来源: 题型:
【题目】二次函数
(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数
有最小值,最小值为﹣3;
(2)当
时,y<0;
(3)二次函数
的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,晚上小亮在广场上乘凉,图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.
请你再图中画出小亮在照明灯P照射下的影子BC;
如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)如图所示,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B,C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内,且点A在点D的左侧.
(1)求二次函数的解析式;
(2)设点A的坐标为(x,y),试求矩形ABCD的周长p关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在
中,
,点
为直线
上的一个动点(与点
不重合),分别作
和
的角平分线,两角平分线所在直线交于点
.
(1)若点
在线段
上,如图1.
①依题意补全图1;
②求
的度数;
(2)当点
在直线
上运动时,
的度数是否变化?若不变,请说明理由;若变化,画出相应的图形,并直接写出
的度数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们已经知道,有一个内角是直角的三角形是直角三角形.其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家已发现在一个直角三角形中,两个直角边边长的平方和等于斜边长的平方.如果设直角三角形的两条直角边长度分别是
和
,斜边长度是
,那么可以用数学语言表达:
.
![]()
(1)在图②,若
,
,则
;
(2)观察图②,利用面积与代数恒等式的关系,试说明
的正确性.其中两个相同的直角三角形边AE、EB在一条直线上;
(3)如图③所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8,BC=10,利用上面的结论求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(a,0)和B(0,b)满足
,分别过点A、B作x轴、y轴的垂线交于点C,如图,点P从原点出发,以每秒2个单位长度的速度沿着O-B-C-A-O的路线移动.
(1)写出A、B、C三点的坐标;
(2)当点P移动了6秒时,描出此时P点的位置,并写出点P的位置坐标;
(3)连结(2)中B、P两点,将线段BP向下平移h个单位(h>0),得到B′P′,若B′P′将四边形OACB的周长分成相等的两部分,求h的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在□ABCD内部,AF∥BE,DF∥CE.
![]()
(1)求证:△BCE≌△ADF;
(2)设□ABCD的面积为20,求四边形AEDF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,如果BD,CE分别是∠ABC,∠ACB的平分线且他们相交于点P,设∠A=n°.
![]()
(1)求∠BPC的度数(用含n的代数式表示),写出推理过程.
(2)当∠BPC=125°时,∠A= .
(3)当n=60°时,EB=7,BC=12,DC的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com