如图,△ABC中,AB=5,BC=11,
,点P是BC边上的一个动点,联结AP,取AP的中点M,将线段MP绕点P顺时针旋转90°得到线段PN,联结AN,NC.
![]()
![]()
(1)当点N恰好落在BC边上时,求NC的长;
(2)若点N在△ABC内部(不含边界),设BP=x,CN=y,求y关于x的函数关系式,并求出函数的定义域;
(3)若△PNC是等腰三角形,求BP的长.
(1)NC =6(2)
(3)BP = 7或
或
.
【解析】
试题分析:(1)根据三角函数定义求出BP,AP即可求出NC;
(2)过A作AD⊥BC于D,过M作ME⊥BC与E,过N作NF⊥BC于F,得到△MEP≌△PFN,利用三角函数定义,平行线的性质,求出ME,表示出EP,再由全等表示出NF,PF,FC,用勾股定理即可表示出NC;
(3)△PNC是等腰三角形,有三种可能:①PN=NC,②PN=PC,③PC=NC,表示出三边,解方程即可.
试题解析:(1)如图,当点N恰好落在BC边上时,AP⊥BC,∵AB=5,
,∴BP=3,AB=4,∵M为AP的中点,∴AM=MP=2,∴PN=MP=2,∴NC=BC-BP-PN=11-3-2=6;
![]()
(2)过A作AD⊥BC于D,过M作ME⊥BC与E,过N作NF⊥BC于F,∵AB=5,
,∴BD=3,AD=4,
∵AD⊥BC,ME⊥BC,∴AD∥ME,∵M为AP的中点,BP=x,∴AM=MP,DE=EP,∴ME=
AD=2,EP=
,∵MP⊥NP,∴∠MPE+∠NPF=90°,∵∠MPE+∠PME=90°,∴∠PME=∠NPF,∵∠MEP=∠PFN=90°,MP=NP,∴△MEP≌△PFN,∴PF=ME=2,NF=EP=
,∴FC=BC-AP-PF=
,∴
=NC=
,
![]()
当N刚好在AC上时,如图,此时有DC=BC-BD=11-3=8,∵AD=4,∴DC=2AD,∵AD∥NF,∴DC:AD=FC:NF,∵NF=EP=
,FC=
,∴FC=2NF,∴
,解得:
,∴定义域为:
;
![]()
(3)
,
,PC=11-
,△PNC是等腰三角形,有三种可能:
①PN=NC,则
,∴
,∴
,∵
,∴
,∴
,∴BP=7;
②PN=PC,则
,∴
,∴
,∴
∵
,∴
,∴BP=
;
③PC=NC,则
,∴
,∴
,∴
∵
,∴
,BP=
.
考点:三角形综合题.
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com