精英家教网 > 初中数学 > 题目详情
(2009•威海)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )

A.2
B.3
C.4
D.5
【答案】分析:直接利用平移中点的变化规律求解即可.
解答:解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,
由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选A.
点评:本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
练习册系列答案
相关习题

科目:初中数学 来源:2011年湖北省荆州市江陵县五三中学中考数学模拟试卷(一)(解析版) 题型:解答题

(2009•威海)如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:______.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2009•威海)如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:______.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前30天冲刺得分专练8:二次函数(解析版) 题型:解答题

(2009•威海)如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:______.

查看答案和解析>>

科目:初中数学 来源:2009年山东省威海市中考数学试卷(解析版) 题型:解答题

(2009•威海)如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过A,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心,以AD为半径作⊙A.
①证明:当AD+CD最小时,直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:______.

查看答案和解析>>

科目:初中数学 来源:2009年山东省威海市中考数学试卷(解析版) 题型:选择题

(2009•威海)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )

A.AD=BC
B.CD=BF
C.∠A=∠C
D.∠F=∠CDE

查看答案和解析>>

同步练习册答案