精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是(    )
A.1B.4C.3D.2
C

试题分析:先由∠BAC=90°,AD⊥BC,∠B=∠B证得△ABD∽△CBA,再根据相似三角形的性质求得BD的长,即可求得结果.
解:∵∠BAC=90°,AD⊥BC,∠B=∠B
∴△ABD∽△CBA

∵AB=2,BC=4
,解得
∴CD=BC-BD=3
故选C.
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.

(1)写出A、C两点的坐标;
(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;
(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.
如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.

(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,是一个照相机成像的示意图.

(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?
(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若线段a=4cm,b=9cm,则线段a,b的比例中项是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于

A.          B.             C.             D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,ABCD是边长为1的正方形,对角线AC所在的直线上有两点M、N,使∠MBN=1350,则MN的最小值是不是(    )
A.1+B.2+C.3+D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值
A.只有1个B.可以有2个C.可以有3个D.有无数个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知△ABC∽△DEF,AB=6cm,DE="12cm," 且△ABC的周长为24cm,则△DEF的周长为          

查看答案和解析>>

同步练习册答案