精英家教网 > 初中数学 > 题目详情

已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.

 
【小题1】求证:FD是⊙O的切线;
【小题2】设OC与BE相交于点G,若OG=4,求⊙O
半径的长;
【小题3】在(2)的条件下,当OE=6时,求图中阴影部分的面积.(结果保留根号)


【小题1】连接OC.∵OA=OC
∴∠A=∠ACO
∵OE⊥AC∠FCA=∠AOE
∴∠A+∠AOE=∠ACO+∠FCA=90°
∴∠FCO=90°
∴FD是⊙O的切线(4分)

【小题2】∵OE⊥AC,AO=CO
∴AE=EC
∵AO=BO
∴OE∥CB且2OE=BC
∴△GEO∽△CGB

∵OG=4
∴CG=8
OC=CG+OG=12
⊙O半径的长为12.  (7分)
【小题3】∵OE=6,根据(2)可得BC=12
∵⊙O半径的长为12.
∴△OCB是等边三角形,即∠COB=60°
DC=OCtan∠COB=12
=72,
=24
阴影部分的面积.=(10分)

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:在△ABC中,AB=4,BC=5,CA=6.
(1)如果DE=10,那么当EF=
 
,FD=
 
时,△DEF∽△ABC;
(2)如果DE=10,那么当EF=
 
,FD=
 
时,△FDE∽△ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知:在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法来证明这个结论,可以假设(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香坊区一模)已知:在△ABC中,AB=AC,点P是BC上一点,PC=2PB,连接AP,作∠APD=∠B交AB于点D.连接CD,交AP于点E.
(1)如图1,当∠BAC=90°时,则线段AD与BD的数量关系为
AD=
5
4
BD
AD=
5
4
BD

(2)如图2,当∠BAC=60°时,求证:AD=
7
2
BD;
(3)在(2)的条件下,过点C作∠DCQ=60°交PA的延长线于点Q如图3,连接DQ,延长CA交DQ于点K,若CQ=
67
2
.求线段AK的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,AB=AC=2a,∠ABC=∠ACB=15° 求:S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,AB=3,AC=7,BC长是正整数,当△ABC的周长最大时,此时BC的长为
9
9

查看答案和解析>>

同步练习册答案