精英家教网 > 初中数学 > 题目详情

在△ABC和△A'B'C'中,AB=A'B',∠B=∠B',补充条件后仍不一定能保证△ABC≌△A'B'C',则补充的这个条件是(     )

A.BC=B'C'        B.∠A=∠A'         C.AC=A'C'          D.∠C=∠C'

 

【答案】

C.

【解析】

试题分析:全等三角形的判定可用SAS,ASA,SSS,AAS等进行判定,因此按判定全等的方法逐个验证:

A.满足两边夹一角SAS条件,能保证△ABC≌△A'B'C';

B.满足两角夹一边ASA条件,能保证△ABC≌△A'B'C';

C.构成两边带一角SSA条件,不一定能保证△ABC≌△A'B'C';

D.满足两角带一边AAS条件,能保证△ABC≌△A'B'C'.

故选C.

考点:全等三角形的判定.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在△ABC和△DEF中,AB=DE,当
BC=EF,AC=DE
时,△ABC≌△DEF,理由是
SSS

查看答案和解析>>

科目:初中数学 来源: 题型:

16、完成下面的证明过程:
如图,已知:AB是∠CAD的平分线,∠C=∠D.
求证:BC=BD.
证明:∵AB是∠CAD的平分线,
∴∠
1
=∠
2

在△ABC和△ABD中,
1
=∠
2

∠ABD=∠
ABC

AB=
AB

∴△ABC≌△ABD(ASA)
BC
=
BD

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,在△ABC和△ADE中,AB=AD,AC=AE,∠DAC=∠BAE.
(1)请说明BC=DE;
(2)图中还有许多相等的线段,请你再写出两组.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC和△A′B′C′中,∠C=∠C′,且b-a=b′-a′,b+a=b′+a′,则这两个三角形(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意,把下列推理所依据的命题写出来,并指出是公理还是定理.
(1)如图所示,若∠1=∠2,则a∥b;
(2)在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,∠A=∠A′,则△ABC≌△A′B′C′;
(3)如果a=b,b=c,那么a=c.

查看答案和解析>>

同步练习册答案