精英家教网 > 初中数学 > 题目详情

(1)如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.

求∠AEB的大小;

(2)如图,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.

解:(1)如图

∵ △BOC和△ABO都是等边三角形,

且点O是线段AD的中点,

  ∴ OD=OC=OB=OA,∠1=∠2=60°,

  ∴ ∠4=∠5.

 又∵∠4+∠5=∠2=60°,

  ∴ ∠4=30°

同理,∠6=30°.

  ∵ ∠AEB=∠4+∠6,

  ∴ ∠AEB=60°.

(2)如图.

 

∵ △BOC和△ABO都是等边三角形,

∴ OD=OC, OB=OA,∠1=∠2=60°,

又∵OD=OA,

  ∴ OD=OB,OA=OC,

  ∴ ∠4=∠5,∠6=∠7.

∵ ∠DOB=∠1+∠3,

     ∠AOC=∠2+∠3,

∴∠DOB=∠AOC.

∵ ∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°,

∴ 2∠5=2∠6,

∴ ∠5=∠6

又∵ ∠AEB=∠8-∠5, ∠8=∠2+∠6,

  ∴ ∠AEB=∠2+∠5-∠5=∠2,

  ∴ ∠AEB=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图,点O是△ABC中∠ABC与∠ACB的平分线的交点,OD∥AB交BC于D点,OE∥AC交BC于E点,若BC=20cm,则△ODE的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,点P是圆O的直径BC的延长线上一点,过点P作圆O的切线PA,切点为A,连接BA、OA、CA,过点A作AD⊥BC于D,请你找出图中共有
4
个直角(不要再添加辅助线),并用“┓”符号在图中标注出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,点P是∠BAC的平分线上一点,PE⊥AB,PF⊥AC,E,F分别为垂足,①PE=PF,②AE=AF,③∠APE=∠APF,上述结论中正确的是
①②③
(只填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•郑州模拟)如图,点C是∠MAN平分线上的一点,过点C作CF⊥AM于点F,CE⊥AN于点E,过点C作CD∥AN交AM于点D,CB∥AM交AN于点B.请你判断四边形ABCD是什么特殊的四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

说理填空:如图,点E是DC的中点,EC=EB,∠CDA=120°,DF∥BE,且DF平分∠CDA,若△BCE的周长为18cm,求DC的长.
解:因为DF平分∠CDA,(已知)
所以∠FDC=
12
ADC
ADC
.(
角平分线意义
角平分线意义

因为∠CDA=120°,(已知)所以∠FDC=
60
60
°.
因为DF∥BE,(已知)所以∠FDC=∠
BEC
BEC
=60°.(
两直线平行,同位角相等
两直线平行,同位角相等

又因为EC=EB,(已知)所以△BCE为等边三角形.(
有一个角是60°的等腰三角形是等边三角形
有一个角是60°的等腰三角形是等边三角形

因为△BCE的周长为18cm,(已知)  所以BE=EC=BC=6cm.
因为点E是DC的中点,(已知)   所以DC=2EC=12cm.

查看答案和解析>>

同步练习册答案