精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠ACB=90°,∠A=30°,AB=6,
求:(1)△ABC的面积;
(2)斜边AB上的高CD的长.
分析:(1)根据含30度角的直角三角形的性质,分别求出边BC和AC的长,然后利用三角形的面积公式求解即可;
(2)△ABC的面积公式同时可以表示为:S△ABC=
1
2
AB•CD,继而即可求出CD的长.
解答:解:(1)∵∠ACB=90°,∠A=30°,AB=6,
∴BC=3,AC=3
3

∴S△ABC=
1
2
BC•AC=
9
3
2

(2)利用三角形的面积公式有:S△ABC=
1
2
AB•CD,
∴CD=
3
3
2
点评:本题考查勾股定理及含30度角的直角三角形的性质,解题关键是熟练掌握三角形的面积公式并灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案