【题目】下面是小明设计的“作平行四边形的高”的尺规作图过程
已知:平行四边形ABCD.
求作:
,垂足为点E.
作法:如图,
①分别以点A和点B为圆心,大于
的长为半径作弧,两弧相交于P,Q两点;
②作直线PQ,交AB于点O;
③以点O为圆心,OA长为半径做圆,交线段BC于点E;
④连接AE.
所以线段AE就是所求作的高.
根据小明设计的尺规作图过程
⑴使用直尺和圆规,补全图形;(保留作图痕迹)
⑵完成下面的证明
证明:
AP=BP, AQ= ,
PQ为线段AB的垂直平分线.
O为AB中点.
AB为直径,⊙O与线段BC交于点E,
.( )(填推理的依据)
.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据:
≈1.4,
≈1.7).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点
是线段
上一点,
,以点
为圆心,
的长为半径作⊙
,过点
作
的垂线交⊙
于
,
两点,点
在线段
的延长线上,连接
交⊙
于点
,以
,
为边作
.
![]()
(1)求证:
是⊙
的切线;
(2)若
,求四边形
与⊙
重叠部分的面积;
(3)若
,
,连接
,求
和
的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线
与
轴交于点
,与
轴交于点
,将线段
绕点
顺时针旋转90°得到线段
,反比例函数
的图象经过点
.
![]()
(1)求直线
和反比例函数
的解析式;
(2)已知点
是反比例函数
图象上的一个动点,求点
到直线
距离最短时的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张华为了测量重庆最高塔楼
的高度,他从塔楼底部
出发,沿广场前进185米至点
,继而沿坡度为
的斜坡向下走65米到达码头
,然后在浮桥上继续前行110米至趸船
,在
处小明操作一架无人勘测机,当无人勘测机飞行至点
的正上方点
时,测得码头
的俯角为
,楼顶
的仰角为
,点
在同一平面内,则塔楼
的高度约为( )(结果精确到1米,参考数据:
,
,![]()
)
![]()
A.319米B.335米C.342米D.356米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,抛物线
与
轴交于
两点(点
在点
左侧),与
轴交于点
,顶点为
.
(1)如图,直线
下方抛物线上的一个动点
(不与点
重合),过点
作
于点
,当
最大时,点
为线段
一点(不与点
重合),当
的值最小时,求点
的坐标;
(2)将
沿直线
翻折得
,再将
绕着点
顺时针旋转
得
,在旋转过程中直线
与直线
相交于点
,与
轴相交于点
,当
是等腰三角形时,求
的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法错误的是( )
![]()
A.这栋居民楼共有居民125人
B.每周使用手机支付次数为28~35次的人数最多
C.有的人每周使用手机支付的次数在35~42次
D.每周使用手机支付不超过21次的有15人
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com