精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0)
(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式.
【答案】分析:(1)先过点B作BF⊥x轴于F,根据∠BCO=45°,BC=,求出CF=BF的长,再根据点C的坐标,求出AB=OF的值,从而求出点B的坐标.
(2)先过点D作DG⊥y轴于点G,根据AB∥DG,得出△ODG∽△OBA,再根据AB=6,OA=12,求出DG与OG的值,从而求出点D与点E的坐标,最后设直线DE的解析式为y=kx+b(k≠0),再把D与E点的坐标代入,即可求出直线DE的解析式.
解答:解:(1)过点B作BF⊥x轴于F,
在Rt△BCF中,∠BCO=45°,
∴∠CBF=45°,
∵BC=
∴CF=BF=12,
∵点C的坐标为(-18,0),
∴AB=OF=18-12=6.
∴点B的坐标为(-6,12).

(2)过点D作DG⊥y轴于点G.
∵AB∥DG,
∴△ODG∽△OBA,
===
∵AB=6,OA=12,
∴DG=4,OG=8.
∴D(-4,8),E(0,4),
设直线DE的解析式为y=kx+b(k≠0),将D(-4,8),E(0,4)代入,得

 解得  
∴直线DE解析式为y=-x+4.
点评:此题考查了一次函数的综合,用到的知识点是一次函数的图象与性质、相似三角形的判定与性质,关键是根据相似求出线段的长度得出点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案