精英家教网 > 初中数学 > 题目详情
如图,△ABC中,已知∠C=90°,CD⊥AB于D,AC=9,BC=12,求CD的长.
分析:在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,再利用面积法求出CD的长即可.
解答:解:在Rt△ABC中,AC=9,BC=12,
根据勾股定理得:AB=
AC2+BC2
=15,
∵△ABC中,∠C=90°,CD⊥AB,
∴S△ABC=
1
2
AC•BC=
1
2
AB•CD,即AC•BC=AB•CD,
则CD=
AC•BC
AB
=
9×12
15
=
36
5
点评:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图在△ABC中,已知点D、E、F分别为边BC,AD,CE的中点,且△ABC的面积是4,则△BEF的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,△ABC中,已知AB=AC,要使AD=AE,需要添加的一个条件是
BD=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,已知AB=AC,△DEF是△ABC的内接正三角形,α=∠BDF,β=∠CED,γ=∠AFE,则用β、γ表示α的关系式是
α=
β+γ
2
α=
β+γ
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,已知AB=AC,BD=DC,则∠ADB=
90°
90°

查看答案和解析>>

科目:初中数学 来源: 题型:

对同一图形,从不同的角度看就会有不同的发现,请根据右图解决以下问题:
(1)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,分别以AB、AC所在的直线为对称轴,作出△ABD、△ACD的轴对称图形,点D的对称点分别为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
(2)如图,在边长为12cm的正方形AEFG中,点B是边EG上一点,将边AE、AF分别沿AB、AC向内翻折至AD处,则点B、D、C在一条直线上,若EB=4cm,求△ABC的面积.

查看答案和解析>>

同步练习册答案