精英家教网 > 初中数学 > 题目详情

关于x的二次函数,下列说法正确的是(   )

A.图象的开口向上           B.图象的顶点坐标是(-1,2)

C.当x>-时,y随x的增大而减小   D.图象与y轴的交点坐标为(0,2)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求证:方程①有两个实数根;
(2)求证:方程①有一个实数根为1;
(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的二次函数y1和y2,其中y1的图象开口向下,与x轴交于点A(-2,0)和点B(4,0),对称轴平行于y轴,其顶点M与点B的距离为5,而y2=-
4
9
x2-
16
9
x+
2
9

(I)求二次函数y1的解析式;
(II)把y2化为y2=a(x-h)2+k的形式;
(III)将y1的图象经过怎样的平移能得到y2的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知关于x的二次函数y=x2+(2k-1)x+k2-1.
(1)若关于x的一元二次方程x2+(2k-1)x+k2-1=0的两根的平方和等于9,求k的值,并在直角坐标系(如图)中画出函数y=x2+(2k-1)x+k2-1的大致图象;
(2)在(1)的条件下,设这个二次函数的图象与x轴从左至右交于A、B两点.问函数对称轴右边的图象上,是否存在点M,使锐角△AMB的面积等于3.若存在,请求出点M的坐标;若不存在,请说明理由;
(3)在(1)、(2)条件下,若P点是二次函图象上的点,且∠PAM=90°,求△APM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知关于x 的一元二次方程(m+2)x2-2x-1=0.
(1)若此一元二次方程有实数根,求m的取值范围;
(2)若关于x的二次函数y1=(m+2)x2-2x-1和y2=(m+2)x2+mx+m+1的图象都经过x轴上的点(n,0),求m的值;
(3)在(2)的条件下,将二次函数y1=(m+2)x2-2x-1的图象先沿x轴翻折,再向下平移3个单位,得到一个新的二次函数y3的图象.请你直接写出二次函数y3的解析式,并结合函数的图象回答:当x取何值时,这个新的二次函数y3的值大于二次函数y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数y=(m+2)xm2+m-4-1是关于x的二次函数,求:
(1)满足条件的m值;
(2)m为何值时,抛物线的开口向下?并求出此时抛物线的对称轴.
(3)m为何值时,抛物线有最低点?并求出这个最低点.

查看答案和解析>>

同步练习册答案