精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=3,BC=4,则tanα等于(  )
分析:首先根据∠ACB=90°,CD⊥AB于点D,证明∠ACD=∠B,进而得到tanα=tanB,再根据正切定义进行计算即可.
解答:解:∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
∵CD⊥AB于点D,
∴∠AB+∠DCB=90°,
∴∠ACD=∠B,
∴tanα=tanB=
AC
CB
=
3
4

故选:C.
点评:此题主要考查了锐角三角函数,关键是证明∠ACD=∠B,掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案