精英家教网 > 初中数学 > 题目详情
如图,已知△ABC是⊙O的内接三角形,AB=AC,AD=AE,AE的延长线与BC的延长线交于点F.
求证:(1)∠DAB=∠CAE;
(2)

【答案】分析:(1)由AB=AC,AD=AE,易证得=,根据圆周角定理,即可证得∠DAB=∠CAE;
(2)由圆的内接四边形的性质,易证得∠ACF=∠ADB,又由∠DAB=∠CAE,即可证得△ADB∽△ACF,然后由相似三角形的对应边成比例,证得结论.
解答:证明:(1)∵AB=AC,AD=AE,
==
-=-
=
∴∠DAB=∠CAE;

(2)∵四边形ADBC是⊙O的内接四边形,
∴∠ADB+∠ACB=180°,
又∵∠ACF+∠ACB=180°,
∴∠ADB=∠ACF,
又∵∠DAB=∠CAE,
∴△ADB∽△ACF,

点评:此题考查了圆周角定理、弦与弧的关系、圆的内接四边形的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案