精英家教网 > 初中数学 > 题目详情
附加题:解方程:
1
x
+
1
y
+
1
z
=1
,其中x、y、z为正整数,且有x>y>z.
分析:由于
1
6
+
1
3
+
1
2
=1,根据方程:
1
x
+
1
y
+
1
z
=1
中,x、y、z为正整数,且x>y>z可知x、y、z的值.
解答:解:∵
1
6
+
1
3
+
1
2
=1,
∵方程:
1
x
+
1
y
+
1
z
=1
,其中x、y、z为正整数,且有x>y>z.
∴x=6,y=3,z=2.
点评:本题难度较大,关键是熟悉
1
6
+
1
3
+
1
2
=1,依此解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

附加题:(如果你的全卷得分不足150分,则本题的得分将计入总分,但计入总分后全卷不得超过150分)
(1)解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
x=1
x-1=2
x=2
x-1=1
x=-1
x-1=-2
x=-2
x-1=-1

解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.
(2)在平面几何中,我们可以证明:周长一定的多边形中,正多边形面积最大.
使用上边的事实,解答下面的问题:
用长度分别为2,3,4,5,6(单位:cm)的五根木棒围成一个三角形(允许连接,但不允许折断),求能够围成的三角形的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:
解下列分式方程:
(1)
x+7
x+6
+
x+9
x+8
=
x+10
x+9
+
x+6
x+5

(2)
1
x(x-1)
+
1
(x-1)(x-2)
+…
1
(x-1991)(x-1992)
=1-
1
x

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:
观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

将以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 

(2)猜想并写出:
1
n(n+2)
=
1
2
1
n
-
1
n+2
).
(3)探究并解方程:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)
=
3
2x+18

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

附加题:
解下列分式方程:
(1)
x+7
x+6
+
x+9
x+8
=
x+10
x+9
+
x+6
x+5

(2)
1
x(x-1)
+
1
(x-1)(x-2)
+…
1
(x-1991)(x-1992)
=1-
1
x

查看答案和解析>>

同步练习册答案