精英家教网 > 初中数学 > 题目详情
(2009•西城区一模)某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.
(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若运送三种苹果所获利润的情况如下表所示:
苹果品种
每吨苹果所获利润(万元)0.220.210.20
设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.
【答案】分析:(1)根据“甲、乙、丙三种苹果共100吨”列二元一次方程,变形后得出y与x之间的关系式为y=-3x+10.
根据实际意义即y≥1,x≥1,得到x的取值范围是x=1或x=2或x=3;
(2)写出利润与x之间的函数关系:W=-0.14x+21,根据W随x的增大而减小,所以x取1时,可获得最大利润20.86万元.
得出最佳的运输方案.
解答:解:(1)∵8x+10y+11(10-x-y)=100,
∴y与x之间的函数关系式为y=-3x+10.
∵y≥1,解得x≤3.
∵x≥1,10-x-y≥1,且x是正整数,
∴自变量x的取值范围是x=1或x=2或x=3.

解:(2)W=8x×0.22+10y×0.21+11(10-x-y)×0.2=-0.14x+21.
因为W随x的增大而减小,所以x取1时,可获得最大利润,
此时W=20.86(万元).
获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.
点评:主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.
练习册系列答案
相关习题

科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷32(新湾初中 薛源海)(解析版) 题型:解答题

(2009•西城区一模)已知:反比例函数在平面直角坐标系xOy第一象限中的图象如图所示,点A在的图象上,AB∥y轴,与的图象交于点B,AC、BD与x轴平行,分别与的图象交于点C、D.
(1)若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;
(2)若点A的横坐标为m,比较△OBC与△ABC的面积的大小,并说明理由;
(3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市文澜中学中考数学模拟试卷(解析版) 题型:解答题

(2009•西城区一模)已知:反比例函数在平面直角坐标系xOy第一象限中的图象如图所示,点A在的图象上,AB∥y轴,与的图象交于点B,AC、BD与x轴平行,分别与的图象交于点C、D.
(1)若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;
(2)若点A的横坐标为m,比较△OBC与△ABC的面积的大小,并说明理由;
(3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年吉林省珲春市珲春四中中考数学模拟试卷(解析版) 题型:解答题

(2009•西城区一模)已知:反比例函数在平面直角坐标系xOy第一象限中的图象如图所示,点A在的图象上,AB∥y轴,与的图象交于点B,AC、BD与x轴平行,分别与的图象交于点C、D.
(1)若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;
(2)若点A的横坐标为m,比较△OBC与△ABC的面积的大小,并说明理由;
(3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省泰州市泰兴市济川实验初中中考数学二模试卷(解析版) 题型:解答题

(2009•西城区一模)已知:反比例函数在平面直角坐标系xOy第一象限中的图象如图所示,点A在的图象上,AB∥y轴,与的图象交于点B,AC、BD与x轴平行,分别与的图象交于点C、D.
(1)若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;
(2)若点A的横坐标为m,比较△OBC与△ABC的面积的大小,并说明理由;
(3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.

查看答案和解析>>

科目:初中数学 来源:2009年北京市西城区中考数学一模试卷(解析版) 题型:解答题

(2009•西城区一模)已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;
(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA-QO|的取值范围.

查看答案和解析>>

同步练习册答案