精英家教网 > 初中数学 > 题目详情
如图,已知P是边长为a的正方形ABCD内一点,△PBC是等边三角形,则△PAD的外接圆半径是(  )
分析:如图,设△PAD的外接圆为⊙O,根据已知条件可以证明△ABP≌△CDP,然后利用全等三角形的性质得到PA=PD,那么连接OP交AD于E点,根据垂径定理的推论知道E为AD的中点,并且OP⊥AD,根据已知条件和等边三角形的性质可以求出∠APD=150°,接着可以求出∠APO,再利用等腰三角形的性质可以求出∠AOE=30°,然后解直角三角形即可求解.
解答:解:如图,设△PAD的外接圆为⊙O,
∵四边形ABCD是正方形,
∴AB=CD,
∵△PBC是等边三角形,
∴BP=CP,∠PBC=∠PCB=60°,
∴∠ABP=∠PCD=30°,
∴△ABP≌△CDP,
∴PA=PD,
∴∠APD=150°,
连接OP交AD于E点,
根据垂径定理的推论知道E为AD的中点,并且OP⊥AD,
∴∠APO=75°
而OA=OP,
∴∠AOE=30°,
∴AE=
1
2
AO,
∴AD=AO=a,
∴正方形的边长为a.
故选A.
点评:此题既考查了正方形的性质、全等三角形的判定与性质、等边三角形的性质、也考查了垂径定理的推论、解直角三角形等知识点,综合性比较强,对于学生的能力要求比较高,平时加强训练.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB、BC方向精英家教网匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q运动到点C时,P,Q都停止运动.
(1)出发后运动2s时,试判断△BPQ的形状,并说明理由;那么此时PQ和AC的位置关系呢?请说明理由;
(2)设运动时间为t,△BPQ的面积为S,请用t的表达式表示S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知P是边长为2的正方形ABCD的边CD任意一点,且PE⊥DB,垂足为E,PF⊥CA垂足为F,则PE+PF的长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的等边三角形,AB在轴上,点C在第一象限,AC与y轴交于点D,点精英家教网A的坐标为(-1,0).
(1)求B、C、D三点的坐标;
(2)抛物线y=ax2+bx+c经过B、C、D三点,求它的解析式;
(3)过点D作DF∥AB交BC于E,若EF=
12
,判断点F是否在(2)中的抛物线上,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为2
3
的等边三角形.点E、F分别在CB和BC的延长线上,且∠EAF=12O°,设BE=x,CF=y.
(1)求y与x的函数表达式,并求出自变量x的取值范围.
(2)当x为何值时,△ABE≌△FCA.

查看答案和解析>>

同步练习册答案