精英家教网 > 初中数学 > 题目详情
如图(1),点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.
(1)判断CN、DM的数量关系与位置关系,并说明理由;
(2)如图(2),设CN、DM的交点为H,连接BH,求证:△BCH是等腰三角形;
(3)将△ADM沿DM翻折得到△A′DM,延长MA′交DC的延长线于点E,如图(3),求tan∠DEM.
精英家教网
分析:(1)CN=DM,CN⊥DM,由于点M、N分别是正方形ABCD的边AB、AD的中点,所以AM=DN,AD=DC,∠A=∠CDN,由此证明
△AMD≌△DNC,然后利用全等三角形的性质证明 CN=DM,CN⊥DM;
(2)延长DM、CB交于点P.由AD∥BC得到∠MPC=∠MDA,而∠A=∠MBP,MA=MB,由此证明△AMD≌△BMP,然后利用全等三角形的性质即可证明题目结论;
(3)由AB∥DC,得到∠EDM=∠AMD=∠DME,接着得到EM=ED,设AD=A′D=4k,则A′M=AM=2k,那么DE=EA′+2k.而在Rt△DA′E中,A′D2+A′E2=DE2,由此可以得到关于A′E用k表示的结论,然后利用三角函数的定义即可求解.
解答:证明:(1)CN=DM,CN⊥DM,
∵点M、N分别是正方形ABCD的边AB、AD的中点,
∴AM=DN.AD=DC.∠A=∠CDN,
∴△AMD≌△DNC(SAS),
∴CN=DM.∠CND=∠AMD,
∴∠CND+∠NDM=∠AMD+∠NDM=90°,
∴CN⊥DM,
∴CN=DM,CN⊥DM;(3分)

精英家教网(2)延长DM、CB交于点P.
∵AD∥BC,
∴∠MPC=∠MDA,∠A=∠MBP,
∵MA=MB,
∴△AMD≌△BMP(AAS),
∴BP=AD=BC.
∵∠CHP=90°,
∴BH=BC,
即△BCH是等腰三角形;

精英家教网(3)∵AB∥DC,
∴∠EDM=∠AMD=∠DME,
∴EM=ED.
设AD=A′D=4k,则A′M=AM=2k,
∴DE=ME=EA′+2k.
在Rt△DA′E中,A′D2+A′E2=DE2
∴(4k)2+A′E2=(EA′+2k)2
解得A′E=3k,
∴在直角△A′DE中,tan∠DEM=A′D:A′E=
4
3
.(10分)
点评:此题主要考查了正方形的性质,同时也利用了全等三角形的性质与判定、等腰三角形的性质、勾股定理及三角函数的定义,综合性比较强,要求学生对于这些知识点比较熟练才能很好解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,数轴上的点A表示的数为a,则a的绝对值等于 (  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,线段AB、点C在正方形网格中,所有小正方形的边长都相等.
利用画图工具画图:
(1)画线段AC、BC;
(2)延长线段AB到点D,使BD=AB;
(3)画直线CD.
利用画图工具比较大小:
(1)线段CD与线段CB的大小:
CD<CB
CD<CB

(2)∠CBD与∠A的大小
∠CBD>∠A
∠CBD>∠A

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线DE经过点A,DE∥BC,∠DAB=78°,∠ACF=124°,则∠BAC=
46
46
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,三角形ABO绕点O旋转得到三角形CDO,在这个旋转过程中:
(1)旋转中心是
点O
点O
,旋转角是
∠BOD或∠AOC
∠BOD或∠AOC

(2)经过旋转,点A、B分别移到了
C、D
C、D

(3)若AO=3cm,则CO=
3cm
3cm

(4)若∠AOC=60°,∠AOD=20°,则∠BOD=
60°
60°
,∠DOC=
40°
40°

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,长方形ABCD绕点C按逆时针方向旋转45°后得到图形A'B'CD'.请回答下列问题:
(1)点A的对应点是点
A′
,线段AB的对应线段是
A′B′
,∠D的对应角是
∠D′

(2)旋转中心是
点C
,∠BCB'的大小是
45°
,四边形A'B'CD'的形状是
长方形

(3)在四边形A'B'CD'中与线段AD相等的线段有
A′D′、B′C

查看答案和解析>>

同步练习册答案