【题目】如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数
的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.
(1)求一次函数y1=k1x+b与反比例函数
的解析式;
(2)求△COD的面积;
(3)直接写出y1>y2时自变量x的取值范围.
![]()
【答案】(1)y1=﹣
x﹣
,y2=-
(2)
(3)当x<﹣4或0<x<2时,y1>y2
【解析】
试题分析:(1)把点D的坐标代入y2=
利用待定系数法即可求得反比例函数的解析式,作DE⊥x轴于E,根据题意求得A的坐标,然后利用待定系数法求得一次函数的解析式;
(2)联立方程求得C的坐标,然后根据
即可求得△COD的面积;
(3)根据图象即可求得.
试题解析:(1)∵点D(2,﹣3)在反比例函数y2=
的图象上,
∴k2=2×(﹣3)=﹣6,
∴y2=-
;
作DE⊥x轴于E,
∵D(2,﹣3),点B是线段AD的中点,
∴A(﹣2,0),
∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,
∴
,
解得k1=﹣
,b=﹣
,
∴y1=﹣
x﹣
;,
(2)由
,
解得
,
,
∴C(﹣4,
),
∴
=
×
+
×2×3=
;
(3)当x<﹣4或0<x<2时,y1>y2.
![]()
科目:初中数学 来源: 题型:
【题目】将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.
(2)求取出的两张卡片上的数字之和为偶数的概率P.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查
随机调查了某班所有同学最喜欢的节目
每名学生必选且只能选择四类节目中的一类
并将调查结果绘成如下不完整的统计图
根据两图提供的信息,回答下列问题:
最喜欢娱乐类节目的有______人,图中
______;
请补全条形统计图;
根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;
在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,一次函数
与反比例函数
的图象交于A(1,4),B(4,n)两点.
![]()
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
中,
,
,
,若动点
从点
开始,按
的路径运动,且速度为每秒
,设出发的时间为
秒.
![]()
(1)出发2秒后,求
的周长.
(2)问
为何值时,
为等腰三角形?
(3)另有一点
,从点
开始,按
的路径运动,且速度为每秒
,若
、
两点同时出发,当
、
中有一点到达终点时,另一点也停止运动.当
为何值时,直线
把
的周长分成
的两部分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格(元/个)的函数关系如图所示.
(1)当30≤x≤60时,求y与x的函数关系式;
(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;
(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.
(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?
(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,矩形OABC的顶点A、C分别在x轴和y轴的正半轴上,反比例函数y=
在第一象限的图象分别交矩形OABC的边AB、BC边点于E、F,已知BE=2AE,四边形的OEBF的面积等于12.
(1)求k的值;
(2)若射线OE对应的函数关系式是y=
,求线段EF的长;
(3)在(2)的条件下,连结AC,试证明:EF∥AC.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.
(1)求一件A种文具的价格;
(2)根据需要,该校准备在该商店购买A、B两种文具共150件.
①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;
②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com