精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC 中,CDABEFAB,垂足分别为DF

1)若∠1=2,试说明DGBC

2)若CD 平分∠ACB,∠A=60°,求∠B的度数.

【答案】1)证明见解析;(2)∠B=60°

【解析】

1)根据垂直于同一条直线的两直线平行,先判定EFCD,根据两直线平行同位角相等,得∠1=∠BCD;根据等量代换可得∠DCB=∠2,从而根据内错角相等,两直线平行得证;
2)根据CDAB得出∠ADC的度数,从而求出∠ACD的度数,再根据CD平分∠ACB,进而求出∠ACB的度数,再根据三角形内角和定理,可得∠B的度数,.

1)∵CDABEFAB

∴∠EFB=90°,∠CDB=90°

∴∠EFB=CDB

EFCD

∴∠1=BCD

∵∠1=2

∴∠2=BCD

DGBC

2)∵CDAB

∴∠CDA=90°

∵∠A=60°

∴∠ACD=30°

CD平分∠ACB

∴∠ACD=ACB

∴∠ACB=60°

∵∠A=60°

∴∠B=180°-ACB-∠A=60°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系 xOy 中的点 A,给出如下定义:若存在点 B(不与点 A 重合,且直线 AB 不与 坐标轴平行或重合),过点 A 作直线 mx 轴,过点 B 作直线 ny 轴,直线 mn 相交于点 C.当线段 ACBC 的长度相等时,称点 B 为点 A 的等距点,称三角形 ABC 的面积为点 A 的等距面积. 例如:如 图,点 A21),点 B54),因为 AC= BC=3,所以 B 为点 A 的等距点,此时点 A 的等距面积为

(1) A 的坐标是(01),在点 B123),B2 (1 1) B3 (3 2) 中,点A的等距点为

(2) A 的坐标是 (31) ,点 A 的等距点 B 在第三象限,

若点 B 的坐标是 (5 1) ,求此时点 A 的等距面积;

若点 A 的等距面积不小于 2,请直接写出点 B 的横坐标 t 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】筐白菜,以每筐千克为标准,超过或不足的分别用正、负来表示,记录如下:

与标准质量的差单位:千克

筐 数

(1)与标准质量比较,筐白菜总计超过或不足多少千克?

(2)若白菜每千克售价元,则出售这筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线x轴交于点,与y轴交于点,把直线沿x轴的负方向平移6个单位得到直线,直线x轴交于点C,与y轴交于点D,连接BC

如图,分别求出直线的函数解析式;

如果点P是第一象限内直线上一点,当四边形DCBP是平行四边形时,求点P的坐标;

如图,如果点E是线段OC的中点,,交直线于点F,在y轴的正半轴上能否找到一点M,使是等腰三角形?如果能,请求出所有符合条件的点M的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A,B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.

(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).

(1)试作出△ABCC为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;

(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AB=15,AC=13,AD⊥BC于D,AD=12,⊙O是△ABC的外接圆,则⊙O的半径是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图像与正比例函数的图像相交于点A(2,),与轴相交于点B

(1)求的值;

(2)在轴上存在点C,使得AOC的面积等于AOB的面积,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CDAB于点D,AC=4,BC=3,DB=,

(1)求CD、AD的长

(2)判断ABC的形状,并说明理由。

查看答案和解析>>

同步练习册答案