精英家教网 > 初中数学 > 题目详情
如图,已知抛物线经过点B(-2,3),原点O和x轴上另一点A,它的对称轴与x轴交于点C(2,0).
(1)求此抛物线的函数关系式;
(2)连接CB,在抛物线的对称轴上找一点E,使得CB=CE,求点E的坐标;
(3)在(2)的条件下,连接BE,设BE的中点为G,在抛物线的对称轴上是否存在点P,使得△PBG的周长最小?若存在,求出P点坐标;若不存在,请说明理由.
(1)由题意知:A(4,0);
设抛物线的解析式为y=ax(x-4),已知抛物线过B(-2,3);则有:
3=ax(-2)×(-2-4),
a=
1
4

∴抛物线的解析式为:y=
1
4
x2-x;

(2)过点B作BM⊥MC,
∵B点坐标为:(-2,3),C点坐标为:(2,0),
∴MC=4,BM=3,
BC=
BM2+MC2
=5,
∴|CE|=5,
∴E1(2,5),E2(2,-5);

(3)存在.
①当E1(2,5)时,G1(0,4),设点B关于直线x=2的对称点为D,
其坐标为(6,3)
直线DG1的解析式为:y=-
1
6
x+4,
∴P1(2,
11
3

②当E2(2,-5)时,G2(0,-1),直线DG2的解析式为:y=
2
3
x-1
∴P2(2,
1
3

综合①、②存在这样的点P,使得△PBG的周长最小,且点P的坐标为(2,
11
3

或(2,
1
3
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在抛物线y=-
2
3
x2
上取B1
3
2
,-
1
2
),在y轴负半轴上取一个点A1,使△OB1A1为等边三角形;然后在第四象限取抛物线上的点B2,在y轴负半轴上取点A2,使△A1B2A2为等边三角形;重复以上的过程,可得△A99B100A100,则A100的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=
3
5
x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接BD.
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.
(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=x2-4x+3与x轴分别交于A、B两点,交y轴于点C.
(1)求线段AC的长;
(2)求tan∠CBA的值;
(3)连接AC,试问在x轴左侧否存在点Q,使得以C、O、Q为顶点的三角形和△OAC相似?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y.
(1)如图2,求当x=
1
2
时,y的值是多少?
(2)如图3,当点E移动到AB上时,求x、y的值;
(3)求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用一段长为30m的篱笆围出一个一边靠墙的矩形菜园,墙长为18m.设矩形的一边长为xm,面积为ym2
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)菜园的面积能否达到120m2?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0)

探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+
1
x
(x>0)
的图象性质.
1填写下表,画出函数的图象:
x
1
4
1
3
1
2
1234
y
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
x
-
1
x
=0,即x=1时,函数y=x+
1
x
(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

同步练习册答案